A369150 Numbers k neither squarefree nor prime powers such that A053669(k) < k/rad(k) < A119288(k) that are not odd numbers of the form lpf(k)*rad(k), where lpf(k) = A020639(k) and rad(k) = A007947(k).
40, 56, 88, 104, 136, 152, 176, 184, 208, 232, 248, 272, 280, 296, 297, 304, 328, 344, 351, 368, 376, 424, 440, 459, 464, 472, 488, 496, 513, 520, 536, 544, 568, 584, 592, 608, 616, 621, 632, 656, 664, 680, 688, 712, 728, 736, 752, 760, 776, 783, 808, 824, 837
Offset: 1
Keywords
Examples
a(1) = 40 = 2^3 * 5, since 3 < 4 < 5 and 4 != 2. a(2) = 56 = 2^3 * 7, since 3 < 4 < 7 and 4 != 2. a(7) = 176 = 2^4 * 11, since 3 < 8 < 11 and 8 != 2. a(15) = 297 = 3^3 * 11, since 2 < 9 < 11 and 9 != 3. a(248) = 3625 = 5^3 * 29, since 2 < 25 < 29 and 25 != 5, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
s = Select[Range[1000], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]; Select[s, And[#3 < #1 < #2, #1 != #4] & @@ {#1/(Times @@ #2), #2[[2]], #3, First[#2]} & @@ {#, FactorInteger[#][[All, 1]], If[OddQ[#], 2, q = 3; While[Divisible[#, q], q = NextPrime[q]]; q]} &]
Comments