cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369153 Numbers k such that gcd(2*k^7+1, 3*k^3+2) > 1.

This page as a plain text file.
%I A369153 #27 Aug 31 2025 10:28:54
%S A369153 435,1598,2761,3924,5087,6250,7413,8576,9739,10902,12065,13228,14391,
%T A369153 15554,16717,17880,19043,20206,21369,22532,23695,24858,26021,27184,
%U A369153 28347,29510,30673,31836,32999,34162,35325,36488,37651,38814,39977,41140,42303,43466
%N A369153 Numbers k such that gcd(2*k^7+1, 3*k^3+2) > 1.
%C A369153 This GCD is 1163 if k == 435 (mod 1163), or 1 otherwise.
%H A369153 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F A369153 a(n) = 435 + 1163*n.
%F A369153 a(n) = 2*a(n-1) - a(n-2).
%F A369153 G.f.: (435 + 728*x)/(1 - x)^2.
%e A369153 a(0) = 435, 2*435^7+1 = 5894606169966093751 and 3*435^3+2 = 246938627, gcd(5894606169966093751, 246938627) = 1163.
%t A369153 Table[435+n*1163,{n,0,37}] (* _James C. McMahon_, Jan 15 2024 *)
%t A369153 LinearRecurrence[{2,-1},{435,1598},40] (* _Harvey P. Dale_, Aug 31 2025 *)
%K A369153 nonn,easy,changed
%O A369153 0,1
%A A369153 _Philippe Deléham_, Jan 15 2024