This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369154 #18 Jul 13 2024 17:30:58 %S A369154 2,9,15,28,40,41,42,48,60,68,79,83,93,95,98,100,108,114,118,120,124, %T A369154 129,132,137,147,149,167,196,202,206,207,215,219,221,223,225,230,243, %U A369154 248,255,261,265,274,276,287,299,302,320,323,329,337,341,353,356,360,364,365,373,380,381,391,405,410 %N A369154 Numbers k such that A125611(k) = A125611(k + 1). %C A369154 Numbers k such that A125611(k)^6 - 1 is divisible by 7^(k+1). %C A369154 Since the 3 consecutive numbers 40, 41 and 42 are in the sequence, A125611(40) = A125611(41) = A125611(42) = A125611(43). %H A369154 Robert Israel, <a href="/A369154/b369154.txt">Table of n, a(n) for n = 1..430</a> %e A369154 a(3) = 15 is a term because A125611(15) = A125611(16) = 56020344873707, i.e., 56020344873707 is the least prime p such that p^6 - 1 is divisible by 7^15, and in this case p^6 - 1 is also divisible by 7^16. %p A369154 f:= proc(n) local R,r,i; %p A369154 R:= sort(map(rhs@op, [msolve(x^6=1, 7^n)])); %p A369154 for i from 0 do %p A369154 for r in R do %p A369154 if isprime(7^n * i + r) then return 7^n * i + r fi %p A369154 od od; %p A369154 end proc: %p A369154 R:= NULL: count:= 0: %p A369154 for k from 1 while count < 100 do %p A369154 v:= f(k); %p A369154 if v = w then R:= R, k-1; count:= count+1 fi; %p A369154 w:= v; %p A369154 od: %p A369154 R; %o A369154 (Python) %o A369154 from itertools import count, islice %o A369154 from sympy import nthroot_mod, isprime %o A369154 def A369154_gen(): # generator of terms %o A369154 c, m = 1, 1 %o A369154 for k in count(0): %o A369154 m *= 7 %o A369154 r = sorted(nthroot_mod(1,6,m,all_roots=True)) %o A369154 for i in count(0,m): %o A369154 for p in r: %o A369154 if isprime(i+p): %o A369154 if i+p == c: %o A369154 yield k %o A369154 c = i+p %o A369154 break %o A369154 else: %o A369154 continue %o A369154 break %o A369154 A369154_list = list(islice(A369154_gen(),30)) # _Chai Wah Wu_, May 04 2024 %Y A369154 Cf. A125611. %K A369154 nonn %O A369154 1,1 %A A369154 _Robert Israel_, Jan 14 2024