cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369160 Expansion of (1/x) * Series_Reversion( x * ((1-x)^2-x^4) ).

This page as a plain text file.
%I A369160 #10 Jan 15 2024 09:03:52
%S A369160 1,2,7,30,144,742,4012,22458,129035,756602,4509141,27233726,166320987,
%T A369160 1025356360,6372494608,39882831334,251146002084,1590079213920,
%U A369160 10115878798130,64634124182670,414578955678690,2668578654593970,17232252926468640,111602332042716450
%N A369160 Expansion of (1/x) * Series_Reversion( x * ((1-x)^2-x^4) ).
%H A369160 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A369160 a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(3*n-2*k+1,n-4*k).
%o A369160 (PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^2-x^4))/x)
%o A369160 (PARI) a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(3*n-2*k+1, n-4*k))/(n+1);
%Y A369160 Cf. A063021, A369102, A369161.
%K A369160 nonn
%O A369160 0,2
%A A369160 _Seiichi Manyama_, Jan 15 2024