cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A369162 a(n) = A000688(A000688(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 15 2024

Keywords

Comments

First differs from A364388 at n = 42.
The sums of the first 10^k terms, for k = 1, 2, ..., are 10, 102, 1024, 10285, 102988, 1030280, 10304021, 103043644, 1030448091, 10304515936, ... . From these values the asymptotic mean of this sequence, whose existence was proven by Ivić (1983) (see the Formula section), can be empirically evaluated by 1.0304... .

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter XIII, page 477-478.

Crossrefs

Programs

  • Mathematica
    Table[FiniteAbelianGroupCount[FiniteAbelianGroupCount[n]], {n, 1, 100}]
  • PARI
    A000688(n) = vecprod(apply(numbpart, factor(n)[, 2]));
    a(n) = A000688(A000688(n));

Formula

Sum_{k=1..n} a(k) = c * n + O(sqrt(n) * log(n)^4), where c = Sum_{k>=1} d(k) * A000688(k) is a constant, d(k) is the asymptotic density of the set {m | A000688(m) = k} (e.g., d(1) = A059956, d(2) = A271971, d(3) appears in A048109) (Ivić, 1983).

A369163 a(n) = A000005(A000688(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 15 2024

Keywords

Comments

First differs from A007424, A278908, A307848, A323308, A358260 and A365549 at n = 36.
The sums of the first 10^k terms, for k = 1, 2, ..., are 13, 143, 1486, 15054, 151067, 1511982, 15123465, 151245456, 1512484372, 15124927227, ... . From these values the asymptotic mean of this sequence, whose existence was proven by Ivić (1983) (see the Formula section), can be empirically evaluated by 1.512... .

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 73.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, FiniteAbelianGroupCount[n]], {n, 1, 100}]
  • PARI
    a(n) = numdiv(vecprod(apply(numbpart, factor(n)[, 2])));

Formula

Sum_{k=1..n} a(k) = c * n + O(sqrt(n) * log(n)^4), where c = Sum_{k>=1} d(k) * A000005(k) is a constant, d(k) is the asymptotic density of the set {m | A000688(m) = k} (e.g., d(1) = A059956, d(2) = A271971, d(3) appears in A048109) (Ivić, 1983).

A369164 a(n) = A001221(A000688(n)).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Jan 15 2024

Keywords

Comments

First differs from A369165 at n = 36, from A080733 at n = 49, and from A107078 at n = 72.
The sums of the first 10^k terms, for k = 1, 2, ..., are 3, 40, 426, 4307, 43203, 432211, 4322486, 43226028, 432261887, 4322622387, ... . From these values the asymptotic mean of this sequence, whose existence was proven by Ivić (1983) (see the Formula section), can be empirically evaluated by 0.43226... .

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter V, page 164.

Crossrefs

Programs

  • Mathematica
    Table[PrimeNu[FiniteAbelianGroupCount[n]], {n, 1, 100}]
  • PARI
    a(n) = omega(vecprod(apply(numbpart, factor(n)[, 2])));

Formula

Sum_{k=1..n} a(k) = c * n + O(sqrt(n) * log(n)^3/log(log(n))^2), where c = Sum_{k>=1} d(k) * A001221(k) is a constant, d(k) is the asymptotic density of the set {m | A000688(m) = k} (e.g., d(1) = A059956, d(2) = A271971, d(3) appears in A048109) (Ivić, 1983).
Showing 1-3 of 3 results.