A369167 a(n) = A000688(n + A000688(n)).
1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 1, 7, 1, 1, 1, 4, 3, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 3, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3
Offset: 1
References
- József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter XIII, page 478.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Haihong Fan and Wenguang Zhai, A Symmetric Form of the Mean Value Involving Non-Isomorphic Abelian Groups, Symmetry 2022, 14(9), 1755.
- Haihong Fan and Wenguang Zhai, On some sums involving the counting function of nonisomorphic Abelian groups, Lithuanian Mathematical Journal, Vol. 63 (2023), pp. 166-180; arXiv preprint, arXiv:2204.02576 [math.NT], 2022.
- Aleksandar Ivić, An asymptotic formula involving the enumerating function of finite abelian groups, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 3 (1992), pp. 61-66.
Programs
Formula
Sum_{k=1..n} a(k) = c * n + O(n^(k+eps)) for any eps > 0, where c > 0 is a constant and k = 11/12 (Ivić, 1992), 3/4 (Fan and Zhai, 2023), or 2/3 (Fan and Zhai, 2022).