This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369168 #9 Jan 15 2024 09:50:41 %S A369168 1,16,81,625,1296,2401,10000,14641,23040,28561,32256,38400,38416, %T A369168 50625,50688,59904,75264,78336,83521,87552,89600,105984,125440,130321, %U A369168 133632,140800,142848,166400,170496,185856,188928,194481,198144,216576,217600,234256,243200 %N A369168 Numbers k such that A000005(k) = A000688(k). %C A369168 The asymptotic density of this sequence is 0 (Ivić, 1983). %C A369168 If k is a term, then every number with the same prime signature (A124832) as k is a term. The least term of each prime signature is given in A369169. %D A369168 József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 73. %H A369168 Amiram Eldar, <a href="/A369168/b369168.txt">Table of n, a(n) for n = 1..10000</a> %H A369168 Aleksandar Ivić, <a href="https://doi.org/10.1016/0022-314X(83)90037-9">On the number of abelian groups of a given order and on certain related multiplicative functions</a>, Journal of Number Theory, Vol. 16, No. 1 (1983), pp. 119-137. %F A369168 x * log(log(x))/log(x) << N(x) << x / log(x)^(1-eps) for every 0 < eps < 1, where N(x) is the number of terms not exceeding x (Ivić, 1983). %t A369168 Select[Range[250000], DivisorSigma[0, #] == FiniteAbelianGroupCount[#] &] %o A369168 (PARI) is(n) = {my(e = factor(n)[,2]); vecprod(apply(x -> x+1, e)) == vecprod(apply(numbpart, e));} %Y A369168 Cf. A000005, A000688, A124832. %Y A369168 Subsequence of A369170. %Y A369168 A369169 is a subsequence. %K A369168 nonn %O A369168 1,2 %A A369168 _Amiram Eldar_, Jan 15 2024