This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369172 #27 Jan 18 2024 07:47:54 %S A369172 2,3,3,5,4,5,9,7,6,9,3,3,17,13,11,4,4,10,17,7,7,7,7,7,7,4,5,5,33,25, %T A369172 21,9,9,9,9,7,7,2,19,8,8,8,8,8,8,18,33,15,15,15,15,15,15,15,15,15,15, %U A369172 15,15,15,15,8,13,5,5,5,8,13,5,5,8,13,5,8,13,5,8,13,5,5,13,5,5,5,7,6,9,9 %N A369172 Irregular triangle read by rows: row n lists the lengths of the strings of the MIU formal system at the n-th level of the tree generated by recursively applying the system rules, starting from the MI string. %C A369172 See A368946 for the description of the MIU formal system and the triangle of corresponding strings. %D A369172 Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262. %H A369172 Paolo Xausa, <a href="/A369172/b369172.txt">Table of n, a(n) for n = 0..3670</a> (rows 0..7 of the triangle, flattened). %H A369172 Wikipedia, <a href="https://en.wikipedia.org/wiki/MU_puzzle">MU Puzzle</a>. %H A369172 <a href="/index/Go#GEB">Index entries for sequences from "Goedel, Escher, Bach"</a>. %F A369172 T(n,k) = A055642(A368946(n,k)). %F A369172 T(n,k) = A369206(n,k) + A369207(n,k) + 1. %e A369172 Triangle begins: %e A369172 [0] 2; %e A369172 [1] 3 3; %e A369172 [2] 5 4 5; %e A369172 [3] 9 7 6 9 3 3; %e A369172 [4] 17 13 11 4 4 10 17 7 7 7 7 7 7 4 5 5; %e A369172 ... %t A369172 MIUStepOW3[s_] := Flatten[Map[{If[StringEndsQ[#, "1"], # <> "0", Nothing], # <> #, StringReplaceList[#, "111" -> "0"], StringReplaceList[#, "00" -> ""]}&, s]]; %t A369172 With[{rowmax = 5}, StringLength[NestList[MIUStepOW3, {"1"}, rowmax]]] + 1 %Y A369172 Cf. A055642, A368946, A368947 (row lengths), A369206, A369207. %K A369172 nonn,tabf %O A369172 0,1 %A A369172 _Paolo Xausa_, Jan 15 2024