This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369173 #38 Jan 30 2024 04:11:29 %S A369173 31,301,310,311,3001,3010,3011,3100,3101,3110,30001,30010,30011,30100, %T A369173 30101,30110,31000,31001,31010,31100,31111,300001,300010,300011, %U A369173 300100,300101,300110,301000,301001,301010,301100,301111,310000,310001,310010,310100,310111,311000,311011,311101,311110,311111 %N A369173 Irregular triangle read by rows: row n lists all of the distinct derivable strings in the MIU formal system that are n characters long. %C A369173 See A368946 for the description of the MIU formal system. %C A369173 A string S can be derived in the MIU formal system if and only if S contains just one M (as its first character) and an arbitrary number of I and U characters, where the number of I characters is not divisible by 3 (see Wikipedia link). %C A369173 Strings are encoded using the map M -> 3, I -> 1 and U -> 0, and then sorted. %C A369173 Row n has length A024495(n). %D A369173 Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262. %H A369173 Paolo Xausa, <a href="/A369173/b369173.txt">Table of n, a(n) for n = 2..10922</a> (rows 2..14 of the triangle, flattened). %H A369173 Wikipedia, <a href="https://en.wikipedia.org/wiki/MU_puzzle">MU Puzzle</a>. %H A369173 <a href="/index/Go#GEB">Index entries for sequences from "Goedel, Escher, Bach"</a>. %e A369173 Triangle begins: %e A369173 [2] 31; %e A369173 [3] 301 310 311; %e A369173 [4] 3001 3010 3011 3100 3101 3110; %e A369173 [5] 30001 30010 30011 30100 30101 30110 31000 31001 31010 31100 31111; %e A369173 ... %t A369173 A369173row[n_] := Map[FromDigits[Join[{3}, #]]&, Select[Tuples[{0, 1}, n - 1], !Divisible[Count[#, 1], 3]&]]; Array[A369173row, 5, 2] %Y A369173 Cf. A368946, A024495 (row lengths), A369174 (number of zeros), A369179 (number of ones), A369409. %Y A369173 Cf. A369586 (shortest proofs), A369408 (length of shortest proofs), A369587 (number of symbols of shortest proofs). %K A369173 nonn,tabf,easy %O A369173 2,1 %A A369173 _Paolo Xausa_, Jan 15 2024