This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369184 #14 Jan 20 2024 09:25:17 %S A369184 1,8,103,117,156,268,1038,1027,1059,1246,1245,1347,1578,3789,10136, %T A369184 10126,10234,10355,10157,10236,10158,11456,10247,10245,10289,10237, %U A369184 10235,10347,10256,10257,10246,10789,10239,10579,12567,10578,13457,12369,14559,12458,12579,23789,24789,12459,100258,12345 %N A369184 a(n) is the first positive number that has exactly n anagrams which have 3 prime divisors, counted by multiplicity, or 0 if there is no such number. %C A369184 An anagram of a number k is a permutation of the base-10 digits of k with no leading 0's. %C A369184 a(n) is the first k such that A175854(k) = n, or 0 if n is not a term of A175854. %C A369184 Conjecture: all a(n) > 0. %H A369184 Robert Israel, <a href="/A369184/b369184.txt">Table of n, a(n) for n = 0..1000</a> %e A369184 a(5) = 268 because 268 has 5 anagrams that have 3 prime divisors, counted by multiplicity, and is the first number that does that: %e A369184 268 = 2^2 * 67, 286 = 2 * 11 * 13, 628 = 2^2 * 157, 682 = 2 * 11 * 31, 826 = 2 * 7 * 59. %p A369184 f:= proc(n) local L, d, w, x, i; %p A369184 L:= convert(n, base, 10); d:= nops(L); %p A369184 L:= select(t -> t[-1] <> 0, combinat:-permute(L)); %p A369184 L:= map(t-> add(t[i]*10^(i-1), i=1..d), L); %p A369184 nops(select(t -> numtheory:-bigomega(t)=3, L)) %p A369184 end proc: %p A369184 g:= proc(xin,d,n) # first anagrams with n digits starting xin, all other digits >= d %p A369184 option remember; %p A369184 local i; %p A369184 if 1 + ilog10(xin) = n then return xin fi; %p A369184 seq(procname(10*xin+i,i,n), i=d..9) %p A369184 end proc: %p A369184 h:= proc(n) # first anagrams with n digits %p A369184 local i,j; %p A369184 seq(seq(g(i*10^j,i,n),j=n-1..0,-1),i=1..9) %p A369184 end proc: %p A369184 N:= 100: # for a(0) .. a(N) %p A369184 V:= Array(0..N): count:= 0: %p A369184 for i from 1 while count < N+1 do %p A369184 for x in [h(i)] while count < N+1 do %p A369184 v:= f(x); %p A369184 if v <= N and V[v] = 0 then V[v]:= x; count:= count+1; fi %p A369184 od %p A369184 od: %p A369184 convert(V,list); %o A369184 (Python) %o A369184 from sympy import primeomega %o A369184 from sympy.utilities.iterables import multiset_permutations %o A369184 from itertools import combinations_with_replacement, count, islice %o A369184 def func(n): return sum(1 for p in multiset_permutations(str(n)) if p[0]!='0' and primeomega(int("".join(p)))==3) %o A369184 def agen(): # generator of terms %o A369184 adict, n = dict(), 0 %o A369184 for d in count(1): %o A369184 for f in "123456789": %o A369184 for r in combinations_with_replacement("0123456789", d-1): %o A369184 k = int(f+"".join(r)) %o A369184 v = func(k) %o A369184 if v not in adict: %o A369184 adict[v] = k %o A369184 while n in adict: yield adict[n]; n += 1 %o A369184 print(list(islice(agen(), 44))) # _Michael S. Branicky_, Jan 15 2024 %Y A369184 Cf. A014612, A175854. All terms are in A179239. %K A369184 nonn,base %O A369184 0,2 %A A369184 _Robert Israel_, Jan 15 2024