cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369190 Expansion of (1/x) * Series_Reversion( x / ((1-x)^2 * (1+x)^4) ).

This page as a plain text file.
%I A369190 #20 Feb 15 2024 04:25:50
%S A369190 1,2,3,-2,-39,-176,-442,-26,6222,36062,113240,91632,-1303985,-9362520,
%T A369190 -34625652,-50327818,293446186,2693939308,11475384425,23120716658,
%U A369190 -62820989127,-813918935104,-3964894957296,-10002153961552,10192131001136,250612187843962
%N A369190 Expansion of (1/x) * Series_Reversion( x / ((1-x)^2 * (1+x)^4) ).
%H A369190 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A369190 G.f.: exp( Sum_{k>=1} A368467(k) * x^k/k ).
%F A369190 a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(2*(n+1),k) * binomial(4*(n+1),n-k).
%F A369190 a(n) = (1/(n+1)) * [x^n] ( (1-x)^2 * (1+x)^4 )^(n+1).
%o A369190 (PARI) a(n) = sum(k=0, n, (-1)^k * binomial(2*(n+1), k)*binomial(4*(n+1), n-k))/(n+1);
%Y A369190 Cf. A291534, A370107.
%Y A369190 Cf. A368467.
%K A369190 sign
%O A369190 0,2
%A A369190 _Seiichi Manyama_, Feb 10 2024