A369192 Number of labeled simple graphs with n vertices and at most n edges (not necessarily covering).
1, 1, 2, 8, 57, 638, 9949, 198440, 4791323, 135142796, 4346814276, 156713948672, 6251579884084, 273172369790743, 12969420360339724, 664551587744173992, 36543412829258260135, 2146170890448154922648, 134053014635659737513358, 8872652968135849629240560
Offset: 0
Keywords
Examples
The a(0) = 1 through a(3) = 8 graphs: {} {} {} {} {{1,2}} {{1,2}} {{1,3}} {{2,3}} {{1,2},{1,3}} {{1,2},{2,3}} {{1,3},{2,3}} {{1,2},{1,3},{2,3}}
Crossrefs
Counting only covered vertices gives A369193.
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[#]<=n&]],{n,0,5}]
-
Python
from math import comb def A369192(n): return sum(comb(comb(n,2),k) for k in range(n+1)) # Chai Wah Wu, Jul 14 2024
Formula
a(n) = Sum_{k=0..n} binomial(binomial(n,2),k).