This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369193 #7 Jan 17 2024 23:32:54 %S A369193 1,1,2,8,57,608,8614,151365,3162353,76359554,2088663444,63760182536, %T A369193 2147325661180,79051734050283,3157246719905273,135938652662043977, %U A369193 6275929675565965599,309242148569525451140,16197470691388774460758,898619766673014862321176,52639402023471657682257626 %N A369193 Number of labeled simple graphs with n vertices and at most as many edges as covered (non-isolated) vertices. %F A369193 Binomial transform of A369191. %e A369193 The a(0) = 1 through a(3) = 8 graphs: %e A369193 {} {} {} {} %e A369193 {{1,2}} {{1,2}} %e A369193 {{1,3}} %e A369193 {{2,3}} %e A369193 {{1,2},{1,3}} %e A369193 {{1,2},{2,3}} %e A369193 {{1,3},{2,3}} %e A369193 {{1,2},{1,3},{2,3}} %t A369193 Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[#]<=Length[Union@@#]&]],{n,0,5}] %Y A369193 The case of equality is A367862, covering case of A116508, also A367863. %Y A369193 The covering case is A369191, for loop-graphs A369194. %Y A369193 The version counting all vertices is A369192. %Y A369193 The version for loop-graphs is A369196, counting all vertices A066383. %Y A369193 A006125 counts simple graphs, unlabeled A000088. %Y A369193 A006129 counts covering graphs, unlabeled A002494. %Y A369193 A054548 counts graphs covering n vertices with k edges, with loops A369199. %Y A369193 A133686 counts choosable graphs, covering A367869. %Y A369193 A367867 counts non-choosable graphs, covering A367868. %Y A369193 Cf. A000169, A000272, A000666, A001187, A006649, A053530, A129271, A143543, A322661, A367916. %K A369193 nonn %O A369193 0,3 %A A369193 _Gus Wiseman_, Jan 17 2024