cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369195 Irregular triangle read by rows where T(n,k) is the number of labeled connected loop-graphs covering n vertices with k edges.

This page as a plain text file.
%I A369195 #20 Feb 02 2024 23:56:15
%S A369195 1,0,1,0,1,2,1,0,0,3,10,12,6,1,0,0,0,16,79,162,179,116,45,10,1,0,0,0,
%T A369195 0,125,847,2565,4615,5540,4720,2948,1360,455,105,15,1,0,0,0,0,0,1296,
%U A369195 11436,47100,121185,220075,301818,325578,282835,200115,115560,54168,20343,5985,1330,210,21,1
%N A369195 Irregular triangle read by rows where T(n,k) is the number of labeled connected loop-graphs covering n vertices with k edges.
%C A369195 This sequence excludes the graph consisting of a single isolated vertex without a loop. - _Andrew Howroyd_, Feb 02 2024
%H A369195 Andrew Howroyd, <a href="/A369195/b369195.txt">Table of n, a(n) for n = 0..1560</a> (rows 0..20)
%F A369195 E.g.f.: 1 - x + log(Sum_{j >= 0} (1 + y)^binomial(j+1, 2)*x^j/j!). - _Andrew Howroyd_, Feb 02 2024
%e A369195 Triangle begins:
%e A369195     1
%e A369195     0    1
%e A369195     0    1    2    1
%e A369195     0    0    3   10   12    6    1
%e A369195     0    0    0   16   79  162  179  116   45   10    1
%e A369195 Row n = 3 counts the following loop-graphs (loops shown as singletons):
%e A369195   .  .  {12,13}  {1,12,13}   {1,2,12,13}   {1,2,3,12,13}   {1,2,3,12,13,23}
%e A369195         {12,23}  {1,12,23}   {1,2,12,23}   {1,2,3,12,23}
%e A369195         {13,23}  {1,13,23}   {1,2,13,23}   {1,2,3,13,23}
%e A369195                  {2,12,13}   {1,3,12,13}   {1,2,12,13,23}
%e A369195                  {2,12,23}   {1,3,12,23}   {1,3,12,13,23}
%e A369195                  {2,13,23}   {1,3,13,23}   {2,3,12,13,23}
%e A369195                  {3,12,13}   {1,12,13,23}
%e A369195                  {3,12,23}   {2,3,12,13}
%e A369195                  {3,13,23}   {2,3,12,23}
%e A369195                  {12,13,23}  {2,3,13,23}
%e A369195                              {2,12,13,23}
%e A369195                              {3,12,13,23}
%t A369195 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A369195 Table[Length[Select[Subsets[Subsets[Range[n],{1,2}],{k}], Length[Union@@#]==n&&Length[csm[#]]<=1&]], {n,0,5},{k,0,Binomial[n+1,2]}]
%o A369195 (PARI) T(n)={[Vecrev(p) | p<-Vec(serlaplace(1 - x + log(sum(j=0, n, (1 + y)^binomial(j+1, 2)*x^j/j!, O(x*x^n))))) ]}
%o A369195 { my(A=T(6)); for(i=1, #A, print(A[i])) } \\ _Andrew Howroyd_, Feb 02 2024
%Y A369195 Row lengths are A000124.
%Y A369195 Diagonal T(n,n-1) is A000272, rooted A000169.
%Y A369195 The case without loops is A062734.
%Y A369195 Row sums are A062740.
%Y A369195 Transpose is A322147.
%Y A369195 Column sums are A322151.
%Y A369195 Diagonal T(n,n) is A368951, connected case of A368597.
%Y A369195 Connected case of A369199, without loops A054548.
%Y A369195 A000085, A100861, A111924 count set partitions into singletons or pairs.
%Y A369195 A000666 counts unlabeled loop-graphs.
%Y A369195 A001187 counts connected graphs, unlabeled A001349.
%Y A369195 A006125 counts simple graphs, also loop-graphs if shifted left.
%Y A369195 A006129 counts covering graphs, unlabeled A002494.
%Y A369195 A322661 counts covering loop-graphs, unlabeled A322700.
%Y A369195 A368927 counts choosable loop-graphs, covering A369140.
%Y A369195 A369141 counts non-choosable loop-graphs, covering A369142.
%Y A369195 Cf. A001862, A014068, A054923, A057500, A066383, A322114, A322137, A369197.
%K A369195 nonn,tabf
%O A369195 0,6
%A A369195 _Gus Wiseman_, Jan 19 2024