This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369195 #20 Feb 02 2024 23:56:15 %S A369195 1,0,1,0,1,2,1,0,0,3,10,12,6,1,0,0,0,16,79,162,179,116,45,10,1,0,0,0, %T A369195 0,125,847,2565,4615,5540,4720,2948,1360,455,105,15,1,0,0,0,0,0,1296, %U A369195 11436,47100,121185,220075,301818,325578,282835,200115,115560,54168,20343,5985,1330,210,21,1 %N A369195 Irregular triangle read by rows where T(n,k) is the number of labeled connected loop-graphs covering n vertices with k edges. %C A369195 This sequence excludes the graph consisting of a single isolated vertex without a loop. - _Andrew Howroyd_, Feb 02 2024 %H A369195 Andrew Howroyd, <a href="/A369195/b369195.txt">Table of n, a(n) for n = 0..1560</a> (rows 0..20) %F A369195 E.g.f.: 1 - x + log(Sum_{j >= 0} (1 + y)^binomial(j+1, 2)*x^j/j!). - _Andrew Howroyd_, Feb 02 2024 %e A369195 Triangle begins: %e A369195 1 %e A369195 0 1 %e A369195 0 1 2 1 %e A369195 0 0 3 10 12 6 1 %e A369195 0 0 0 16 79 162 179 116 45 10 1 %e A369195 Row n = 3 counts the following loop-graphs (loops shown as singletons): %e A369195 . . {12,13} {1,12,13} {1,2,12,13} {1,2,3,12,13} {1,2,3,12,13,23} %e A369195 {12,23} {1,12,23} {1,2,12,23} {1,2,3,12,23} %e A369195 {13,23} {1,13,23} {1,2,13,23} {1,2,3,13,23} %e A369195 {2,12,13} {1,3,12,13} {1,2,12,13,23} %e A369195 {2,12,23} {1,3,12,23} {1,3,12,13,23} %e A369195 {2,13,23} {1,3,13,23} {2,3,12,13,23} %e A369195 {3,12,13} {1,12,13,23} %e A369195 {3,12,23} {2,3,12,13} %e A369195 {3,13,23} {2,3,12,23} %e A369195 {12,13,23} {2,3,13,23} %e A369195 {2,12,13,23} %e A369195 {3,12,13,23} %t A369195 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A369195 Table[Length[Select[Subsets[Subsets[Range[n],{1,2}],{k}], Length[Union@@#]==n&&Length[csm[#]]<=1&]], {n,0,5},{k,0,Binomial[n+1,2]}] %o A369195 (PARI) T(n)={[Vecrev(p) | p<-Vec(serlaplace(1 - x + log(sum(j=0, n, (1 + y)^binomial(j+1, 2)*x^j/j!, O(x*x^n))))) ]} %o A369195 { my(A=T(6)); for(i=1, #A, print(A[i])) } \\ _Andrew Howroyd_, Feb 02 2024 %Y A369195 Row lengths are A000124. %Y A369195 Diagonal T(n,n-1) is A000272, rooted A000169. %Y A369195 The case without loops is A062734. %Y A369195 Row sums are A062740. %Y A369195 Transpose is A322147. %Y A369195 Column sums are A322151. %Y A369195 Diagonal T(n,n) is A368951, connected case of A368597. %Y A369195 Connected case of A369199, without loops A054548. %Y A369195 A000085, A100861, A111924 count set partitions into singletons or pairs. %Y A369195 A000666 counts unlabeled loop-graphs. %Y A369195 A001187 counts connected graphs, unlabeled A001349. %Y A369195 A006125 counts simple graphs, also loop-graphs if shifted left. %Y A369195 A006129 counts covering graphs, unlabeled A002494. %Y A369195 A322661 counts covering loop-graphs, unlabeled A322700. %Y A369195 A368927 counts choosable loop-graphs, covering A369140. %Y A369195 A369141 counts non-choosable loop-graphs, covering A369142. %Y A369195 Cf. A001862, A014068, A054923, A057500, A066383, A322114, A322137, A369197. %K A369195 nonn,tabf %O A369195 0,6 %A A369195 _Gus Wiseman_, Jan 19 2024