cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369202 Number of unlabeled simple graphs covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

This page as a plain text file.
%I A369202 #14 Feb 02 2024 14:49:24
%S A369202 0,0,0,0,2,13,95,826,11137,261899,11729360,1006989636,164072166301,
%T A369202 50336940172142,29003653625802754,31397431814146891910,
%U A369202 63969589218557753075156,245871863137828405124380563,1787331789281458167615190373076,24636021675399858912682459601585276
%N A369202 Number of unlabeled simple graphs covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).
%C A369202 These are simple graphs covering n vertices such that some connected component has at least two cycles.
%H A369202 Andrew Howroyd, <a href="/A369202/b369202.txt">Table of n, a(n) for n = 0..50</a>
%F A369202 First differences of A140637.
%F A369202 a(n) = A002494(n) - A368834(n).
%e A369202 Representatives of the a(4) = 2 and a(5) = 13 simple graphs:
%e A369202   {12}{13}{14}{23}{24}      {12}{13}{14}{15}{23}{24}
%e A369202   {12}{13}{14}{23}{24}{34}  {12}{13}{14}{15}{23}{45}
%e A369202                             {12}{13}{14}{23}{24}{35}
%e A369202                             {12}{13}{14}{23}{25}{45}
%e A369202                             {12}{13}{14}{25}{35}{45}
%e A369202                             {12}{13}{14}{15}{23}{24}{25}
%e A369202                             {12}{13}{14}{15}{23}{24}{34}
%e A369202                             {12}{13}{14}{15}{23}{24}{35}
%e A369202                             {12}{13}{14}{23}{24}{35}{45}
%e A369202                             {12}{13}{14}{15}{23}{24}{25}{34}
%e A369202                             {12}{13}{14}{15}{23}{24}{35}{45}
%e A369202                             {12}{13}{14}{15}{23}{24}{25}{34}{35}
%e A369202                             {12}{13}{14}{15}{23}{24}{25}{34}{35}{45}
%t A369202 brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
%t A369202 Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]]],{n,0,5}]
%Y A369202 Without the choice condition we have A002494, labeled A006129.
%Y A369202 The connected case is A140636.
%Y A369202 This is the covering case of A140637, complement A134964.
%Y A369202 The labeled version is A367868, complement A367869.
%Y A369202 The complement is counted by A368834.
%Y A369202 The version with loops is A369147, complement A369200.
%Y A369202 A005703 counts unlabeled connected choosable simple graphs, labeled A129271.
%Y A369202 A007716 counts unlabeled multiset partitions, connected A007718.
%Y A369202 A054548 counts graphs covering n vertices with k edges, with loops A369199.
%Y A369202 A283877 counts unlabeled set-systems, connected A300913.
%Y A369202 Cf. A000088, A000612, A006649, A001434, A055621, A137916, A137917, A140638, A368596, A369141, A369146.
%K A369202 nonn
%O A369202 0,5
%A A369202 _Gus Wiseman_, Jan 23 2024