This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369202 #14 Feb 02 2024 14:49:24 %S A369202 0,0,0,0,2,13,95,826,11137,261899,11729360,1006989636,164072166301, %T A369202 50336940172142,29003653625802754,31397431814146891910, %U A369202 63969589218557753075156,245871863137828405124380563,1787331789281458167615190373076,24636021675399858912682459601585276 %N A369202 Number of unlabeled simple graphs covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable). %C A369202 These are simple graphs covering n vertices such that some connected component has at least two cycles. %H A369202 Andrew Howroyd, <a href="/A369202/b369202.txt">Table of n, a(n) for n = 0..50</a> %F A369202 First differences of A140637. %F A369202 a(n) = A002494(n) - A368834(n). %e A369202 Representatives of the a(4) = 2 and a(5) = 13 simple graphs: %e A369202 {12}{13}{14}{23}{24} {12}{13}{14}{15}{23}{24} %e A369202 {12}{13}{14}{23}{24}{34} {12}{13}{14}{15}{23}{45} %e A369202 {12}{13}{14}{23}{24}{35} %e A369202 {12}{13}{14}{23}{25}{45} %e A369202 {12}{13}{14}{25}{35}{45} %e A369202 {12}{13}{14}{15}{23}{24}{25} %e A369202 {12}{13}{14}{15}{23}{24}{34} %e A369202 {12}{13}{14}{15}{23}{24}{35} %e A369202 {12}{13}{14}{23}{24}{35}{45} %e A369202 {12}{13}{14}{15}{23}{24}{25}{34} %e A369202 {12}{13}{14}{15}{23}{24}{35}{45} %e A369202 {12}{13}{14}{15}{23}{24}{25}{34}{35} %e A369202 {12}{13}{14}{15}{23}{24}{25}{34}{35}{45} %t A369202 brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]]; %t A369202 Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]]],{n,0,5}] %Y A369202 Without the choice condition we have A002494, labeled A006129. %Y A369202 The connected case is A140636. %Y A369202 This is the covering case of A140637, complement A134964. %Y A369202 The labeled version is A367868, complement A367869. %Y A369202 The complement is counted by A368834. %Y A369202 The version with loops is A369147, complement A369200. %Y A369202 A005703 counts unlabeled connected choosable simple graphs, labeled A129271. %Y A369202 A007716 counts unlabeled multiset partitions, connected A007718. %Y A369202 A054548 counts graphs covering n vertices with k edges, with loops A369199. %Y A369202 A283877 counts unlabeled set-systems, connected A300913. %Y A369202 Cf. A000088, A000612, A006649, A001434, A055621, A137916, A137917, A140638, A368596, A369141, A369146. %K A369202 nonn %O A369202 0,5 %A A369202 _Gus Wiseman_, Jan 23 2024