This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369203 #28 Jan 20 2024 09:29:47 %S A369203 2,15,117,135,1224,10023,10026,50688,104445,100368,1012257,1002258, %T A369203 1034568,10027899,10024569,100002789,100234566,100236789,1000024569, %U A369203 1012566789,10000224468,10002367899,10002345678,100012344588,100012234689,100223456778,1000012457889,1002345566778 %N A369203 a(n) is the first number that has exactly n anagrams that each have exactly n prime divisors, counted by multiplicity. %C A369203 a(n) is the first number that has n anagrams k such that A001222(k) = n. %C A369203 Does 9 divide a(n) for n > 6? - _David A. Corneth_, Jan 16 2024 %H A369203 David A. Corneth, <a href="/A369203/b369203.txt">Table of n, a(n) for n = 1..61</a> %H A369203 Robert Israel, <a href="/A369203/a369203.txt">Anagrams of a(n) with n prime divisors, for n = 1 to 18</a> %e A369203 a(4) = 135 is a term because 135 has 4 anagrams having 4 prime divisors, counted by multiplicity: 135 = 3^3 * 5, 315 = 3^2 * 5 * 7, 351 = 3^3 * 13 and 513 == 3^3 * 19, and no number < 135 works. %e A369203 a(6) != 2367 because 2367 has exactly 7 anagrams with each having exactly 6 prime divisors (namely 2673, 3276, 3726, 6237, 6372, 6732, 7236). - _David A. Corneth_, Jan 16 2024 %p A369203 f:= proc(n) # numbers k such that n has k anagrams with Omega = k %p A369203 local L, W,WS,V,d, w, x, i; %p A369203 L:= convert(n, base, 10); d:= nops(L); %p A369203 L:= select(t -> t[-1] <> 0, combinat:-permute(L)); %p A369203 L:= map(t-> add(t[i]*10^(i-1), i=1..d), L); %p A369203 W:= map(t -> numtheory:-bigomega(t), L); %p A369203 WS:= convert(W,set); %p A369203 for x in WS do V[x]:= 0 od; %p A369203 for x in W do V[x]:= V[x]+1 od; %p A369203 select(x -> V[x] = x, WS); %p A369203 end proc: %p A369203 g:= proc(xin,d,n) # first anagrams with n digits starting xin, all other digits >= d %p A369203 option remember; %p A369203 local i; %p A369203 if 1 + ilog10(xin) = n then return xin fi; %p A369203 seq(procname(10*xin+i,i,n), i=d..9) %p A369203 end proc: %p A369203 h:= proc(n) # first anagrams with n digits %p A369203 local i,j; %p A369203 seq(seq(g(i*10^j,i,n),j=n-1..0,-1),i=1..9) %p A369203 end proc: %p A369203 V:= 'V': m:= 0: %p A369203 for d from 1 to 9 do %p A369203 for x in h(d) do %p A369203 for y in f(x) do %p A369203 if not assigned(V[y]) then V[y]:= x: m:= max(m,y) fi %p A369203 od od od: %p A369203 seq(V[y],y=1..m); %o A369203 (Python) %o A369203 from collections import Counter %o A369203 from sympy import primeomega as W %o A369203 from sympy.utilities.iterables import multiset_permutations as MP %o A369203 from itertools import combinations_with_replacement, count, islice %o A369203 def counteq(n): %o A369203 c = Counter(W(int("".join(p))) for p in MP(str(n)) if p[0]!='0') %o A369203 return [i for i in c if c[i] == i] %o A369203 def agen(): # generator of terms %o A369203 adict, n = dict(), 1 %o A369203 for d in count(len(str(2**n))): %o A369203 for f in "123456789": %o A369203 for r in combinations_with_replacement("0123456789", d-1): %o A369203 k = int(f+"".join(r)) %o A369203 for v in counteq(k): %o A369203 if v not in adict: %o A369203 adict[v] = k %o A369203 while n in adict: yield adict[n]; n += 1 %o A369203 print(list(islice(agen(), 8))) # _Michael S. Branicky_, Jan 16 2024 %Y A369203 Cf. A001222, A369184. All terms are in A179239. %K A369203 nonn,base %O A369203 1,1 %A A369203 _Robert Israel_, Jan 15 2024 %E A369203 More terms from _David A. Corneth_, Jan 16 2024