cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A369205 Numbers m such that A188999(A034448(m)) = k*m for some k, where A034448 and A188999 are respectively the unitary and the bi-unitary sigma function.

Original entry on oeis.org

1, 2, 9, 10, 15, 18, 21, 30, 40, 42, 60, 120, 288, 567, 630, 720, 756, 1023, 1134, 1428, 2046, 2160, 2268, 2520, 3024, 3276, 3570, 4092, 6048, 8184, 8925, 9240, 11424, 11550, 15345, 17850, 18144, 30690, 35700, 46200, 57120, 85680, 147312, 285600, 491040, 556920
Offset: 1

Views

Author

Tomohiro Yamada, Jan 16 2024

Keywords

Examples

			A034448(18) = 4 * 10 = 40 and A188999(40) = 15 * 6 = 90 = 5 * 18, so 18 is a term with k = 5.
		

Crossrefs

Cf. A038843 (analog for A034448(A034448(m))), A318175 (analog for A188999(A188999(m))).
Cf. A369204 (analog for A034448(A188999(m))).

Programs

  • PARI
    a034448(n) = {my(f,i,p,e);f=factor(n);for(i=1,#f~,p=f[i,1];e=f[i,2];f[i,1]=p^e+1;f[i,2]=1);factorback(f)};
    a188999(n) = {my(f,i,p,e);f=factor(n);for(i=1,#f~,p=f[i,1];e=f[i,2];f[i,1]=if(e%2,(p^(e+1)-1)/(p-1),(p^(e+1)-1)/(p-1)-p^(e/2));f[i,2]=1);factorback(f)};
    isok(n) = (a188999(a034448(n))%n) == 0;
Showing 1-1 of 1 results.