cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369209 Numbers whose number of divisors has the largest prime factor 3.

This page as a plain text file.
%I A369209 #10 Jan 16 2024 06:56:46
%S A369209 4,9,12,18,20,25,28,32,36,44,45,49,50,52,60,63,68,72,75,76,84,90,92,
%T A369209 96,98,99,100,108,116,117,121,124,126,132,140,147,148,150,153,156,160,
%U A369209 164,169,171,172,175,180,188,196,198,200,204,207,212,220,224,225,228
%N A369209 Numbers whose number of divisors has the largest prime factor 3.
%C A369209 Subsequence of A059269 and first differs from it at n = 36: A059269(136) = 44 has 15 = 3 * 5 divisors and thus is not a term of this sequence.
%C A369209 Numbers k such that A000005(k) is in A065119.
%C A369209 Numbers k such that A071188(k) = 3.
%C A369209 Equals the complement of A354181, without the terms of A036537 (i.e., complement(A354181) \ A036537).
%C A369209 The asymptotic density of this sequence is Product_{p prime} (1-1/p) * (Sum_{k>=1} 1/p^(A003586(k)-1)) - A327839 = 0.26087647470200496716... .
%H A369209 Amiram Eldar, <a href="/A369209/b369209.txt">Table of n, a(n) for n = 1..10000</a>
%t A369209 gpf[n_] := FactorInteger[n][[-1, 1]]; Select[Range[300], gpf[DivisorSigma[0, #]] == 3 &]
%o A369209 (PARI) gpf(n) = if(n == 1, 1, vecmax(factor(n)[, 1]));
%o A369209 is(n) = gpf(numdiv(n)) == 3;
%Y A369209 Cf. A000005, A003586, A006530, A036537, A065119, A336595, A071188, A211337, A211338, A327839, A354181.
%Y A369209 Subsequence of A013929 and A059269.
%Y A369209 Subsequences: A001248, A030627, A050997, A054753, A062503, A067259, A079395, A085986, A085987, A086975, A095990, A096156, A138032, A162143, A179643, A179645.
%K A369209 nonn,easy
%O A369209 1,1
%A A369209 _Amiram Eldar_, Jan 16 2024