This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369226 #33 Feb 15 2024 04:38:51 %S A369226 1,1,4,13,53,220,968,4373,20271,95705,458904,2228220,10934524, %T A369226 54143848,270189008,1357428997,6860264323,34853234867,177900211204, %U A369226 911867479717,4691701977973,24222505191984,125448280976224,651555603531308,3392951906596708,17711433386188300 %N A369226 Expansion of (1/x) * Series_Reversion( x * (1-x) / (1+x^2)^2 ). %H A369226 Peter Bala, <a href="/A251592/a251592.pdf">Fractional iteration of a series inversion operator</a> %H A369226 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A369226 a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+2,k) * binomial(2*n-2*k,n-2*k). %F A369226 a(n) = (1/(n+1)) * [x^n] ( 1/(1-x) * (1+x^2)^2 )^(n+1). - _Seiichi Manyama_, Feb 14 2024 %o A369226 (PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)/(1+x^2)^2)/x) %o A369226 (PARI) a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1); %Y A369226 Cf. A052709, A369262. %Y A369226 Cf. A218045, A370243. %K A369226 nonn %O A369226 0,3 %A A369226 _Seiichi Manyama_, Jan 18 2024