cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369228 a(n) is the least k that starts a sequence of exactly n numbers on which i + Omega(i) is constant, where Omega = A001222.

This page as a plain text file.
%I A369228 #7 Jan 20 2024 09:25:34
%S A369228 1,4,45,104,71874,392274,305778473,24405534712
%N A369228 a(n) is the least k that starts a sequence of exactly n numbers on which i + Omega(i) is constant, where Omega = A001222.
%C A369228 a(n) is the least k such that Omega(k + j) = Omega(k) - j for 0 <= j <= n-1, but not for j = -1 or j = n.
%C A369228 Dickson's conjecture implies that a(n) exists for all n.
%e A369228 Omega(1) = 0 while Omega(0) is undefined and Omega(2) = 1, so a(1) = 1.
%e A369228 Omega(4 .. 5) = (2, 1) while Omega(3) = 1 and Omega(6) = 2, so a(2) = 4.
%e A369228 Omega(45 .. 47) = (3, 2, 1) while Omega(44) = 3 and Omega(48) = 2  so a(3) = 45.
%e A369228 Omega(104 .. 107) = (4, 3, 2, 1) while Omega(103) = 1 and Omega(108) = 3 so a(4) = 104.
%e A369228 Omega(71874 .. 71878) = (7, 6, 5, 4, 3)  while Omega(71873) = 2 and Omega(71879) = 6 so a(5) = 71874.
%e A369228 Omega(392274 .. 392279) = (6, 5, 4, 3, 2, 1) while Omega(392273) = 2 and Omega(392280) = 5 so a(6) = 392274.
%e A369228 Omega(305778473 .. 305778479) = (7, 6, 5, 4, 3, 2, 1)  while Omega(305778472) = 4 and Omega(305778480) = 6 so a(7) = 305778473.
%p A369228 V:= Vector(7): count:= 0: v:= 1 + numtheory:-bigomega(1); u:= 1;
%p A369228 for i from 2 while count < 7 do
%p A369228     w:= i + numtheory:-bigomega(i);
%p A369228     if w <> v then
%p A369228       if V[i-u] = 0 then V[i-u]:= u; count:= count+1 fi;
%p A369228       u:= i; v:= w;
%p A369228     fi;
%p A369228 od:
%p A369228 convert(V,list);
%Y A369228 Cf. A001222, A369139, A369185.
%K A369228 nonn,more
%O A369228 1,2
%A A369228 _Zak Seidov_ and _Robert Israel_, Jan 16 2024
%E A369228 a(8) from _Daniel Suteu_, Jan 18 2024