This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369238 #29 Jan 20 2025 03:55:32 %S A369238 72474,106674,193026,237522,261478,308649,342066,370785,391674,491322, %T A369238 604878,865974,885477,931022,938598,1005630,1070727,1152822,1186926, %U A369238 1206822,1289978,1306878,1363326,1371774,1392726,1412918,1455249,1528111,1634227,1654678,1688478 %N A369238 Tetraprime numbers differing by more than 3 from any other squarefree number. %C A369238 Tetraprimes are the product of four distinct prime numbers (cf. A046386). %H A369238 Robert Israel, <a href="/A369238/b369238.txt">Table of n, a(n) for n = 1..5415</a> %e A369238 72474 = 2 * 3 * 47 * 257 is a tetraprime; 72471 = 3 * 7^2 * 17 * 29, 72472 = 2^3 * 9059, 72473 = 23^2 * 137, 72475 = 5^2 * 13 * 223, 72476 = 2^2 * 18119, 72477 = 3^2 * 8053 are all nonsquarefree numbers, so 72474 is a term. %p A369238 N:= 3*10^6: # for terms <= N %p A369238 P:= select(isprime,[2,seq(i,i=3 .. N/30,2)]): nP:= nops(P): %p A369238 filter:= proc(x) not ormap(numtheory:-issqrfree, [x-3,x-2,x-1,x+1,x+2,x+3]) end proc: %p A369238 R:= NULL: %p A369238 for i1 from 1 to nP do %p A369238 r1:= P[i1]; %p A369238 for i2 from 1 to i1-1 do %p A369238 r2:= r1 * P[i2]; if r2 > N/6 then break fi; %p A369238 for i3 from 1 to i2-1 do %p A369238 r3:= r2 * P[i3]; if r3 > N/2 then break fi; %p A369238 for i4 from 1 to i3-1 do %p A369238 r:= r3 * P[i4]; %p A369238 if r > N then break fi; %p A369238 if filter(r) then R:= R,r; fi %p A369238 od od od od: %p A369238 sort([R]); # _Robert Israel_, Jan 19 2025 %t A369238 f[n_] := Module[{e = FactorInteger[n][[;; , 2]], p}, p = Times @@ e; If[p > 1, 0, If[e == {1, 1, 1, 1}, 1, -1]]]; SequencePosition[Array[f, 2*10^6], {0, 0, 0, 1, 0, 0, 0}][[;; , 1]] + 3 (* _Amiram Eldar_, Jan 19 2024 *) %Y A369238 Cf. A046386, A013929. Subsequence of A268332. %K A369238 nonn %O A369238 1,1 %A A369238 _Massimo Kofler_, Jan 19 2024