This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369240 #19 Jan 22 2024 06:00:03 %S A369240 14,45,74,198,5114,10295,65174,1086194,40354813,20485574,465779078, %T A369240 12101385979,15237604243,18046312939,29501083259,52467636437, %U A369240 65794608773,86725630997,87741700037,131833085077,168380217557,176203950283,177332276971,226152989747,292546582253,307379277253,321317084917,342666536237,348440115979 %N A369240 Irregular triangle read by rows, where row n lists in ascending order all numbers k whose arithmetic derivative k' is equal to the n-th partial sum of primorials, A143293(n). Rows of length zero are simply omitted, i.e., when A369239(n) = 0. %C A369240 Only two nonsquarefree terms are currently known: 45, 198. %C A369240 See comments in A369239 for an explanation why rows with an odd n generally have more terms than those with an even n. %H A369240 Antti Karttunen, <a href="/A369240/b369240.txt">Table of n, a(n) for n = 1..357; all terms up to the row 12 of the table</a>. %H A369240 Antti Karttunen, <a href="/A369239/a369239.txt">PARI program for computing terms of this and related sequences</a>. %e A369240 Row 1 has no terms because there are no numbers whose arithmetic derivative is equal to 3 = A143293(1). %e A369240 Row 2 has just one term: 14 (= 2 * 7), with A003415(14) = 2+7 = 9 = A143293(2). %e A369240 Row 3 has two terms: 45 (= 3^2 * 5) and 74 (= 2 * 37), with A003415(3*3*5) = (3*3) + (3*5) + (3*5) = 39, and A003415(2*37) = 2+37 = 39 = A143293(3). %e A369240 Row 4 has one term: 198 (= 2 * 3^2 * 11). %e A369240 Row 5 has two terms: 5114 (= 2 * 2557) and 10295 (= 5 * 29 * 71). %e A369240 Row 6 has one term: 65174 (= 2 * 32587). %e A369240 Row 7 has two terms: 1086194 (= 2 * 543097) and 40354813 (= 97 * 541 * 769). %e A369240 Row 8 has one term: 20485574 (= 2 * 10242787). %e A369240 Row 9 has 27 terms: %e A369240 465779078 (= 2 * 1049 * 222011), %e A369240 12101385979 (= 79 * 151 * 1014451), %e A369240 15237604243 (= 67 * 2659 * 85531), %e A369240 18046312939 (= 79 * 3931 * 58111), %e A369240 29501083259 (= 179 * 431 * 382391), %e A369240 52467636437 (= 233 * 8501 * 26489), %e A369240 65794608773 (= 449 * 761 * 192557), %e A369240 86725630997 (= 449 * 2213 * 87281), %e A369240 87741700037 (= 449 * 2381 * 82073), %e A369240 131833085077 (= 613 * 12241 * 17569), %e A369240 etc., up to the last one of them: %e A369240 680909375411 (= 8171 * 8219 * 10139). %e A369240 Row 10 has no terms. %e A369240 Row 11 has 319 terms, beginning as: %e A369240 293420849770 (= 2 * 5 * 157 * 186892261), %e A369240 414527038034 (= 2 * 207263519017), %e A369240 12092143168139 (= 59 * 5231 * 39180191), %e A369240 16359091676491 (= 79 * 91291 * 2268319), %e A369240 20784361649963 (= 167 * 251 * 495845639), %e A369240 etc., up to the last one of them: %e A369240 17866904665985941 (= 224869 * 248041 * 320329). %e A369240 Row 12 has just one term: 318745032938881 (= 71 * 173 * 307 * 1259 * 67139). %e A369240 Row 13 probably has thousands of terms. Interestingly, many of them appear in clusters that share a smallest prime factor. For example the following five: %e A369240 390120053091860677 (= 1321 * 23563 * 12533283799), %e A369240 407566547631686353 (= 1321 * 121687 * 2535429439), %e A369240 410999481465461617 (= 1321 * 547999 * 567752023), %e A369240 411668623600396429 (= 1321 * 1701571 * 183144919), %e A369240 411913933485848977 (= 1321 * 8787799 * 35483263), %e A369240 and also these: %e A369240 3846842704473466739 (= 20231 * 31601 * 6017086469), %e A369240 4300947161911032233 (= 20231 * 43319 * 4907590697), %e A369240 4437898843097002379 (= 20231 * 47969 * 4572980861), %e A369240 6130224093530040341 (= 20231 * 692459 * 437587529), %e A369240 6210584908378844243 (= 20231 * 1275569 * 240664037). %Y A369240 Cf. A328243 (same sequence sorted into ascending order). %Y A369240 Cf. A369239 (number of terms on row n), A369243 (the first element of each row), A369244 (the last element of each row). %Y A369240 Cf. A003415, A143293. %Y A369240 Cf. also A366890. %K A369240 nonn,tabf %O A369240 1,1 %A A369240 _Antti Karttunen_, Jan 19 2024