This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369241 #19 Jan 23 2024 16:19:01 %S A369241 0,0,0,0,0,0,0,0,2,1,1,0,2,1,3,0,2,2,6,0,13,1,13,0,15,0,24,1,49,4,47, %T A369241 0,156,6,129,0,441,1,616 %N A369241 Number of representations of 2^n - 1 as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r. %C A369241 Any solutions for odd cases must have p = 3, with q and r > 3, because A000225(2n-1) == 1 (mod 3), while on even n, 2^n - 1 is a multiple of 3. This explains why the odd bisection grows much more sluggishly than the even bisection. %C A369241 Question 2: Is there an infinite number of 0's in this sequence? See also comments in A369055. %F A369241 a(n) = A369054(A000225(n)). %F A369241 For n >= 2, a(n) = A369055(2^(n-2)). %o A369241 (PARI) %o A369241 A369054(n) = if(3!=(n%4),0, my(v = [3,3], ip = #v, r, c=0); while(1, r = (n-(v[1]*v[2])) / (v[1]+v[2]); if(r < v[2], ip--, ip = #v; if(1==denominator(r) && isprime(r),c++)); if(!ip, return(c)); v[ip] = nextprime(1+v[ip]); for(i=1+ip,#v,v[i]=v[i-1]))); %o A369241 search_for_3k1_cases(n) = if(3!=(n%4), 0, my(p = 5, q, c=0); while(1, q = (n-(3*p)) / (3+p); if(q < p, return(c), if(1==denominator(q) && isprime(q), c++; write("b369241_by_solutions_of_odd_bisection_to.txt", n, " ", 3*p*q))); p = nextprime(1+p))); %o A369241 A369241(n) = if(n%2, search_for_3k1_cases((2^n)-1), A369054((2^n)-1)); %Y A369241 Cf. A000225, A369054, A369055, A369248. %Y A369241 Cf. also A369242, A369245. %K A369241 nonn,hard,more %O A369241 0,9 %A A369241 _Antti Karttunen_, Jan 21 2024