This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369252 #26 Jan 24 2024 16:44:23 %S A369252 27,39,51,55,75,71,87,75,91,111,103,123,95,119,147,131,119,151,183, %T A369252 151,135,195,167,155,231,147,199,191,187,255,167,267,211,291,195,215, %U A369252 247,191,263,215,327,251,247,363,203,375,311,271,255,239,411,231,311,343,299,231,435,359,331,447,311,263,391,483,263 %N A369252 Arithmetic derivative applied to the numbers of the form p*q*r where p,q,r are (not necessarily distinct) odd primes. %C A369252 The table showing the possible modulo 3 combinations for p, q, r and the sum ((p*q) + (p*r) + (q*r)): %C A369252 | p | q | r | sum ((p*q) + (p*r) + (q*r)) (mod 3) %C A369252 --+------+------+------+---------------------------------------- %C A369252 | 0 | 0 | 0 | 0, p=q=r=3, sum is 27. %C A369252 --+------+------+------+---------------------------------------- %C A369252 | 0 | 0 | +/-1 | 0, p=q=3, r > 3. %C A369252 --+------+------+------+---------------------------------------- %C A369252 | 0 | +1 | +1 | +1 %C A369252 --+------+------+------+---------------------------------------- %C A369252 | 0 | -1 | -1 | +1 %C A369252 --+------+------+------+---------------------------------------- %C A369252 | 0 | -1 | +1 | -1 %C A369252 --+------+------+------+---------------------------------------- %C A369252 | 0 | +1 | -1 | -1 %C A369252 --+------+------+------+---------------------------------------- %C A369252 | +1 | +1 | +1 | 0 %C A369252 --+------+------+------+---------------------------------------- %C A369252 | -1 | -1 | -1 | 0 %C A369252 --+------+------+------+---------------------------------------- %C A369252 | -1 | +1 | +1 | -1, regardless of the order, thus x3. %C A369252 --+------+------+------+---------------------------------------- %C A369252 | +1 | -1 | -1 | -1, regardless of the order, thus x3. %C A369252 --+------+------+------+---------------------------------------- %C A369252 Notably a(n) is a multiple of 3 only when A046316(n) is either a multiple of 9, or all primes p, q and r are either == +1 (mod 3) or all are == -1 (mod 3), and the case a(n) == +1 (mod 3) is only possible when A046316(n) is a multiple of 3, but not of 9, and furthermore, it is required that r == q (mod 3). See how these combinations affects sequences like A369241, A369245, A369450, A369451, A369452. %C A369252 For n=1..9 the number of terms of the form 3k, 3k+1 and 3k+2 in range [1..10^n-1] are: %C A369252 6, 2, 1, %C A369252 39, 22, 38, %C A369252 291, 209, 499, %C A369252 2527, 1884, 5588, %C A369252 23527, 17020, 59452, %C A369252 227297, 156240, 616462, %C A369252 2232681, 1453030, 6314288, %C A369252 22119496, 13661893, 64218610, %C A369252 220098425, 129624002, 650277572. %C A369252 It seems that 3k+2 terms are slowly gaining at the expense of 3k+1 terms when n grows, while the density of the multiples of 3 might converge towards a limit. %H A369252 Antti Karttunen, <a href="/A369252/b369252.txt">Table of n, a(n) for n = 1..20000</a> %F A369252 a(n) = A003415(A046316(n)). %Y A369252 Cf. A369251 (same sequence sorted into ascending order, with duplicates removed). %Y A369252 Cf. A369464 (numbers that do not occur in this sequence). %Y A369252 Cf. A003415, A046316, A369054, A369058, A369248. %Y A369252 Cf. also the trisections of A369055: A369460, A369461, A369462 and their partial sums A369450, A369451, A369452, also A369241, A369245. %Y A369252 Only terms of A004767 occur here. %K A369252 nonn %O A369252 1,1 %A A369252 _Antti Karttunen_, Jan 22 2024