This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369257 #23 Jan 28 2024 09:20:19 %S A369257 1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,2,1,1,2,1,1,1,2,1,2,1,1,2,1,1,2,1, %T A369257 2,2,1,1,2,1,1,2,1,1,3,1,1,1,2,2,2,1,1,2,2,1,2,1,1,2,1,1,3,1,2,2,1,1, %U A369257 2,2,1,2,1,1,3,1,2,2,1,1,3,1,1,2,2,1,2,1,1,3,2,1,2,1,2,1,1,2,3,2,1,2,1,1,4 %N A369257 a(n) = number of odd divisors of n that have an even number of prime factors with multiplicity. %H A369257 Antti Karttunen, <a href="/A369257/b369257.txt">Table of n, a(n) for n = 1..65537</a> %F A369257 a(n) = Sum_{d|n} A353557(d). %F A369257 a(n) = A001227(n) - A369258(n). %F A369257 a(n) = a(2*n) = a(A000265(n)). %F A369257 For n >= 1, a(2n-1) = A038548(2n-1); for n > 1, a(2n) < A038548(2n). %F A369257 From _Antti Karttunen_, Jan 27 2024: (Start) %F A369257 a(n) = A038548(A000265(n)). %F A369257 a(n) = (A001227(n)+A053866(n))/2. %F A369257 Dirichlet g.f.: (zeta(s)^2*(1-2^-s) + zeta(2s)*(1+2^-s)) / 2. %F A369257 (End) %e A369257 Of the eight odd divisors of 105, the four divisors 1, 15, 21, 35 all have an even number of prime factors (A001222(d) is even), therefore a(105) = 4. %o A369257 (PARI) %o A369257 A353557(n) = ((n%2)&&(!(bigomega(n)%2))); %o A369257 A369257(n) = sumdiv(n,d,A353557(d)); %Y A369257 Inverse Möbius transform of A353557. %Y A369257 Cf. A000265, A001227, A038548, A046337, A053866, A353557, A369258, A369454 (Dirichlet inverse). %K A369257 nonn %O A369257 1,9 %A A369257 _Antti Karttunen_, Jan 24 2024