This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369258 #9 Jan 24 2024 21:27:06 %S A369258 0,0,1,0,1,1,1,0,1,1,1,1,1,1,2,0,1,1,1,1,2,1,1,1,1,1,2,1,1,2,1,0,2,1, %T A369258 2,1,1,1,2,1,1,2,1,1,3,1,1,1,1,1,2,1,1,2,2,1,2,1,1,2,1,1,3,0,2,2,1,1, %U A369258 2,2,1,1,1,1,3,1,2,2,1,1,2,1,1,2,2,1,2,1,1,3,2,1,2,1,2,1,1,1,3,1,1,2,1,1,4 %N A369258 a(n) = number of odd divisors of n that have an odd number of prime factors with multiplicity. %H A369258 Antti Karttunen, <a href="/A369258/b369258.txt">Table of n, a(n) for n = 1..65537</a> %F A369258 a(n) = Sum_{d|n} A353558(d). %F A369258 a(n) = A001227(n) - A369257(n). %e A369258 Of the eight odd divisors of 105, the four divisors 3, 5, 7, 105 all have an odd number of prime factors (A001222(d) is odd), therefore a(105) = 4. %t A369258 Array[DivisorSum[#, 1 &, And[OddQ[#], OddQ@ PrimeOmega[#]] &] &, 120] (* _Michael De Vlieger_, Jan 24 2024 *) %o A369258 (PARI) %o A369258 A353558(n) = ((n%2)&&(bigomega(n)%2)); %o A369258 A369258(n) = sumdiv(n,d,A353558(d)); %Y A369258 Inverse Möbius transform of A353558. %Y A369258 Cf. A001227, A067019, A369257. %K A369258 nonn %O A369258 1,15 %A A369258 _Antti Karttunen_, Jan 24 2024