cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369267 Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / (1+x^3)^2 ).

This page as a plain text file.
%I A369267 #17 Feb 15 2024 04:21:25
%S A369267 1,2,7,32,163,884,5009,29310,175750,1074264,6668825,41929970,
%T A369267 266464579,1708829584,11044663663,71871779008,470495357634,
%U A369267 3096311833496,20472771422946,135937759368388,906056228361095,6059922934991008,40657629626645463
%N A369267 Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / (1+x^3)^2 ).
%H A369267 P. Bala, <a href="/A251592/a251592.pdf">Fractional iteration of a series inversion operator</a>
%H A369267 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A369267 a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(3*n-3*k+1,n-3*k).
%F A369267 a(n) = (1/(n+1)) * [x^n] ( 1/(1-x)^2 * (1+x^3)^2 )^(n+1). - _Seiichi Manyama_, Feb 14 2024
%o A369267 (PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2/(1+x^3)^2)/x)
%o A369267 (PARI) a(n, s=3, t=2, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
%Y A369267 Cf. A369265, A369269.
%Y A369267 Cf. A369266, A370249.
%K A369267 nonn
%O A369267 0,2
%A A369267 _Seiichi Manyama_, Jan 18 2024