cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369277 Distinct values of A369317, in order of appearance.

This page as a plain text file.
%I A369277 #13 Jan 21 2024 09:38:36
%S A369277 1,3,7,5,15,9,31,21,11,13,63,17,51,127,85,33,73,255,27,45,511,65,341,
%T A369277 23,107,29,19,189,195,25,1023,273,69,81,455,129,585,79,93,819,207,121,
%U A369277 243,2047,1365,279,635,443,889,465,4095,257,1419,1677,1057,313,1335
%N A369277 Distinct values of A369317, in order of appearance.
%C A369277 All terms are even.
%C A369277 This sequence is infinite as it contains A126646.
%C A369277 Will every odd number appear in the sequence?
%C A369277 Empirically, each odd number, say v, appears in A369317, and the first index is of the form v*2^k - 1 for some k > 0 (see Example section).
%H A369277 Rémy Sigrist, <a href="/A369277/a369277.gp.txt">PARI program</a>
%H A369277 <a href="/index/Ge#GF2X">Index entries for sequences operating on GF(2)[X]-polynomials</a>
%e A369277 The first terms, alongside their index m in A369317, in decimal and in binary, are:
%e A369277   n   a(n)  m     bin(a(n))  bin(m)
%e A369277   --  ----  ----  ---------  ------------
%e A369277    1     1     1          1             1
%e A369277    2     3     5         11           101
%e A369277    3     7    27        111         11011
%e A369277    4     5    39        101        100111
%e A369277    5    15   119       1111       1110111
%e A369277    6     9   287       1001     100011111
%e A369277    7    31   495      11111     111101111
%e A369277    8    21   671      10101    1010011111
%e A369277    9    11   703       1011    1010111111
%e A369277   10    13   831       1101    1100111111
%e A369277   11    63  2015     111111   11111011111
%e A369277   12    17  2175      10001  100001111111
%o A369277 (PARI) See Links section.
%Y A369277 Cf. A126646, A369317.
%K A369277 nonn,base
%O A369277 1,2
%A A369277 _Rémy Sigrist_, Jan 20 2024