This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369283 #11 Jan 20 2024 13:52:32 %S A369283 1,1,0,1,0,3,0,1,0,0,3,16,12,0,1,0,0,15,60,130,132,140,80,30,0,1,0,0, %T A369283 0,15,600,1692,3160,4635,4620,3480,2088,885,240,60,0,1,0,0,0,105,1260, %U A369283 7665,28042,74280,142380,218960,271404,276150,230860,157710,86250,38752,13524,3360,560,105,0,1 %N A369283 Triangle read by rows: T(n,k) is the number of labeled point-determining graphs with n nodes and k edges, n >= 0, 0 <= k <= n*(n - 1)/2. %C A369283 Point-determining graphs are also called mating graphs. %H A369283 Andrew Howroyd, <a href="/A369283/b369283.txt">Table of n, a(n) for n = 0..1350</a> (rows 0..20) %H A369283 Ira M. Gessel and Ji Li, <a href="https://doi.org/10.1016/j.jcta.2010.03.009">Enumeration of point-determining graphs</a>, J. Combinatorial Theory Ser. A 118 (2011), 591-612. %F A369283 Sum_{k>=0} 2^k*T(n,k) = A102596(n). %F A369283 Sum_{k>=0} 3^k*T(n,k) = A102579(n). %e A369283 Triangle begins: %e A369283 [0] 1; %e A369283 [1] 1; %e A369283 [2] 0, 1; %e A369283 [3] 0, 3, 0, 1; %e A369283 [4] 0, 0, 3, 16, 12, 0, 1; %e A369283 [5] 0, 0, 15, 60, 130, 132, 140, 80, 30, 0, 1; %e A369283 [6] 0, 0, 0, 15, 600, 1692, 3160, 4635, 4620, 3480, 2088, 885, 240, 60, 0, 1; %e A369283 ... %o A369283 (PARI) %o A369283 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A369283 edges(p,t) = {prod(i=2, #p, prod(j=1, i-1, t(p[i]*p[j])))} %o A369283 row(n) = {my(s=0); forpart(p=n, s += permcount(p)*(-1)^(n-#p)*edges(p, w->1 + x^w)); Vecrev(s)} %Y A369283 Row sums are A006024. %Y A369283 Cf. A102579, A102596, A368987 (unlabeled). %K A369283 nonn,tabf %O A369283 0,6 %A A369283 _Andrew Howroyd_, Jan 18 2024