This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369286 #8 Jan 28 2024 18:10:45 %S A369286 1,0,0,0,0,0,0,0,1,0,0,1,0,0,5,2,0,0,6,3,0,0,16,16,5,0,0,22,44,13,0,0, %T A369286 45,135,82,11,0,0,64,338,301,52,0,0,119,880,1233,382,34,0,0,171,2024, %U A369286 4090,1936,211,0,0,294,4674,13474,9500,1843,87,0,0,433,10191,40532,40817,11778,873 %N A369286 Triangle read by rows: T(n,k) is the number of non-isomorphic multiset partitions of weight n with k parts and no constant parts or vertices that appear in only one part, 0 <= k <= floor(n/2). %C A369286 T(n,k) is the number of nonnegative integer matrices with sum of values n, k rows and every row and column having at least two nonzero entries up to permutation of rows and columns. %H A369286 Andrew Howroyd, <a href="/A369286/b369286.txt">Table of n, a(n) for n = 0..675</a> (rows 0..50) %F A369286 T(2*n,n) = A307316(n). %e A369286 Triangle begins: %e A369286 1; %e A369286 0; %e A369286 0, 0; %e A369286 0, 0; %e A369286 0, 0, 1; %e A369286 0, 0, 1; %e A369286 0, 0, 5, 2; %e A369286 0, 0, 6, 3; %e A369286 0, 0, 16, 16, 5; %e A369286 0, 0, 22, 44, 13; %e A369286 0, 0, 45, 135, 82, 11; %e A369286 0, 0, 64, 338, 301, 52; %e A369286 0, 0, 119, 880, 1233, 382, 34; %e A369286 0, 0, 171, 2024, 4090, 1936, 211; %e A369286 ... %e A369286 The T(6,2) = 5 multiset partitions are: %e A369286 {{1,1,1,2}, {1,2}}, %e A369286 {{1,1,2,2}, {1,2}}, %e A369286 {{1,1,2}, {1,1,2}}, %e A369286 {{1,1,2}, {1,2,2}}, %e A369286 {{1,2,3}, {1,2,3}}. %e A369286 The corresponding T(6,2) = 5 matrices are: %e A369286 [3 1] [2 2] [2 1] [2 1] [1 1 1] %e A369286 [1 1] [1 1] [2 1] [1 2] [1 1 1] %e A369286 The T(6,3) = 2 matrices are: %e A369286 [1 1] [1 1 0] %e A369286 [1 1] [1 0 1] %e A369286 [1 1] [0 1 1] %o A369286 (PARI) %o A369286 EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A369286 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A369286 K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))} %o A369286 H(q, t, k)={my(c=sum(j=1, #q, if(t%q[j]==0, q[j]))); eta(x + O(x*x^k))*(1 + x*Ser(K(q,t,k))) + x*(1-c)/(1-x) - 1} %o A369286 G(n,y=1)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, subst(H(q, t, n\t)*y^t/t, x, x^t) ))); s/n!} %o A369286 T(n)={my(v=Vec(G(n,'y))); vector(#v, i, Vecrev(v[i], (i+1)\2))} %o A369286 { my(A=T(15)); for(i=1, #A, print(A[i])) } %Y A369286 Row sums are A321760. %Y A369286 Cf. A307316, A369287. %K A369286 nonn,tabf %O A369286 0,15 %A A369286 _Andrew Howroyd_, Jan 28 2024