This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369287 #7 Jan 28 2024 18:10:51 %S A369287 1,0,0,1,0,1,0,2,3,0,2,4,0,4,15,8,0,4,24,19,0,7,60,79,23,0,8,101,213, %T A369287 84,0,12,210,615,424,66,0,14,357,1523,1533,363,0,21,679,3851,5580, %U A369287 2217,212,0,24,1142,8963,17836,10379,1575,0,34,2049,20840,55730,45866,11616,686 %N A369287 Triangle read by rows: T(n,k) is the number of non-isomorphic multiset partitions of weight n with k parts and no singletons or vertices that appear only once, 0 <= k <= floor(n/2). %C A369287 T(n,k) is the number of nonnegative integer matrices with sum of values n, k rows and every row and column sum at least two up to permutation of rows and columns. %H A369287 Andrew Howroyd, <a href="/A369287/b369287.txt">Table of n, a(n) for n = 0..675</a> (rows 0..50) %F A369287 T(2*n, n) = A050535(n). %e A369287 Triangle begins: %e A369287 1; %e A369287 0; %e A369287 0, 1; %e A369287 0, 1; %e A369287 0, 2, 3; %e A369287 0, 2, 4; %e A369287 0, 4, 15, 8; %e A369287 0, 4, 24, 19; %e A369287 0, 7, 60, 79, 23; %e A369287 0, 8, 101, 213, 84; %e A369287 0, 12, 210, 615, 424, 66; %e A369287 0, 14, 357, 1523, 1533, 363; %e A369287 0, 21, 679, 3851, 5580, 2217, 212; %e A369287 0, 24, 1142, 8963, 17836, 10379, 1575; %e A369287 ... %e A369287 The T(5,1) = 2 multiset partitions are: %e A369287 {{1,1,1,1,1}}, %e A369287 {{1,1,1,2,2}}. %e A369287 The corresponding T(5,1) = 2 matrices are: %e A369287 [5] [3 2]. %e A369287 The T(5,2) = 4 matrices are: %e A369287 [3] [3 0] [2 1] [2 1] %e A369287 [2] [0 2] [1 1] [0 2], %o A369287 (PARI) %o A369287 EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A369287 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A369287 K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))} %o A369287 H(q, t, k)={my(c=sum(j=1, #q, if(t%q[j]==0, q[j]))); (1 - x)*x*Ser(K(q,t,k)) - c*x} %o A369287 G(n,y=1)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, subst(H(q, t, n\t)*y^t/t, x, x^t) ))); s/n!} %o A369287 T(n)={my(v=Vec(G(n,'y))); vector(#v, i, Vecrev(v[i], (i+1)\2))} %o A369287 { my(A=T(15)); for(i=1, #A, print(A[i])) } %Y A369287 Row sums are A320665. %Y A369287 Columns k=0..1 are A000007, A002865(n>0). %Y A369287 Cf. A050535, A369286. %K A369287 nonn,tabf %O A369287 0,8 %A A369287 _Andrew Howroyd_, Jan 28 2024