This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369297 #14 Feb 15 2024 04:12:48 %S A369297 1,2,7,31,153,806,4440,25266,147364,876282,5292527,32378125,200218715, %T A369297 1249456536,7858638756,49766595855,317051378103,2030589300596, %U A369297 13066646029059,84439101344619,547746622599561,3565472378360110,23282050305073680,152466688160732190 %N A369297 Expansion of (1/x) * Series_Reversion( x * (1-x)^2 * (1-x^3) ). %H A369297 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A369297 a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+k,k) * binomial(3*n-3*k+1,n-3*k). %F A369297 a(n) = (1/(n+1)) * [x^n] 1/( (1-x)^2 * (1-x^3) )^(n+1). - _Seiichi Manyama_, Feb 14 2024 %o A369297 (PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2*(1-x^3))/x) %o A369297 (PARI) a(n, s=3, t=1, u=2) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1); %Y A369297 Cf. A063030, A369265. %Y A369297 Cf. A370273. %K A369297 nonn %O A369297 0,2 %A A369297 _Seiichi Manyama_, Jan 18 2024