A369306 The number of cubefree divisors d of n such that n/d is also cubefree.
1, 2, 2, 3, 2, 4, 2, 2, 3, 4, 2, 6, 2, 4, 4, 1, 2, 6, 2, 6, 4, 4, 2, 4, 3, 4, 2, 6, 2, 8, 2, 0, 4, 4, 4, 9, 2, 4, 4, 4, 2, 8, 2, 6, 6, 4, 2, 2, 3, 6, 4, 6, 2, 4, 4, 4, 4, 4, 2, 12, 2, 4, 6, 0, 4, 8, 2, 6, 4, 8, 2, 6, 2, 4, 6, 6, 4, 8, 2, 2, 1, 4, 2, 12, 4, 4, 4
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_,e_] := Switch[e, 1, 2, 2, 3, 3, 2, 4, 1, , 0]; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = vecprod(apply(x -> [2, 3, 2, 1, 0][min(x, 5)], factor(n)[,2]));
Formula
Multiplicative with a(p) = 2, a(p^2) = 3, a(p^3) = 2, a(p^4) = 1, and a(p^e) = 0 for e >= 5.
a(n) >= 0, with equality if and only if n is a 5-full number (A069492) larger than 1.
a(n) = 1 if and only if n is the 4th power of a squarefree number (A005117).
Dirichlet g.f.: zeta(s)^2/zeta(3*s)^2.
Sum_{k=1..n} a(k) ~ (n/zeta(3)^2) * (log(n) + 2*gamma - 1 - 6*zeta'(3)/zeta(3)), where gamma is Euler's constant (A001620).
Comments