cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369307 The number of exponentially odd divisors d of n such that n/d is also exponentially odd.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 2, 1, 4, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 4, 4, 2, 4, 1, 4, 2, 2, 2, 8, 2, 2, 4, 4, 4, 1, 2, 4, 4, 4, 2, 8, 2, 2, 2, 4, 2, 4, 1, 2, 4, 2, 2, 4, 4, 4, 4, 4, 2, 4, 2, 4, 2, 3, 4, 8, 2, 2, 4, 8, 2, 2, 2, 4, 2, 2, 4, 8, 2, 4, 2, 4, 2, 4, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 19 2024

Keywords

Comments

First differs from A366308 at n = 32.
Dirichlet convolution of A295316 with itself.

Crossrefs

Programs

  • Mathematica
    f[p_,e_] := If[OddQ[e], 2, e/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, 2, x/2), factor(n)[,2]));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X^2 + X)^2/(1 - X^2)^2)[n], ", ")) \\ Vaclav Kotesovec, Jan 19 2024
    
  • Python
    from math import prod
    from sympy import factorint
    def A369307(n): return prod(2 if e&1 else e>>1 for e in factorint(n).values()) # Chai Wah Wu, Jan 19 2024

Formula

Multiplicative with a(p^e) = 2 is e is odd, and e/2 if e is even.
a(n) >= 1, with equality if and only if n is the square of a squarefree number (A062503).
a(n) <= A000005(n), with equality if and only if n is squarefree (A005117).
Dirichlet g.f.: zeta(2*s)^2 * (Product_{p prime} (1 + 1/p^s - 1/p^(2*s)))^2.
From Vaclav Kotesovec, Jan 19 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (p^(2*s) + p^s - 1)^2 / ((p^s + 1)^2 * p^(2*s)).
Let f(s) = Product_{p prime} (p^(2*s) + p^s - 1)^2 / ((p^s + 1)^2 * p^(2*s)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - (2*p^2 + 2*p - 1) / (p^2*(p+1)^2)) = 0.49623881454854881762168565097162197963340069996226074849602334089041678...,
f'(1) = f(1) * Sum_{p prime} 2*(2*p + 1) * log(p) / ((p+1)*(p^2 + p - 1)) = f(1) * 1.49674466685934940187617305887881799198585080518913793200171026177150513...
and gamma is the Euler-Mascheroni constant A001620. (End)