A369309 The number of powerful divisors d of n such that n/d is also powerful.
1, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_,e_] := If[e == 2, 2, e-1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = vecprod(apply(x -> if(x==2, 2, x-1), factor(n)[,2]));
Formula
Multiplicative with a(p^2) = 2 and a(p^e) = e-1 if e != 2.
a(n) > 0 if and only if n is powerful (A001694).
Dirichlet g.f.: (zeta(2*s)*zeta(3*s)/zeta(6*s))^2.
Sum_{k=1..n} a(k) ~ (zeta(3/2)^2/(2*zeta(3)^2)) * sqrt(n) * (log(n) + 4*gamma - 2 + 6*zeta'(3/2)/zeta(3/2) - 12*zeta'(3)/zeta(3)), where gamma is Euler's constant (A001620).