cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A365498 Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s)).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 1, 2, 4, 2, 4, 2, 4, 4, 1, 2, 4, 2, 4, 4, 4, 2, 2, 2, 4, 1, 4, 2, 8, 2, 1, 4, 4, 4, 4, 2, 4, 4, 2, 2, 8, 2, 4, 4, 4, 2, 2, 2, 4, 4, 4, 2, 2, 4, 2, 4, 4, 2, 8, 2, 4, 4, 1, 4, 8, 2, 4, 4, 8, 2, 2, 2, 4, 4, 4, 4, 8, 2, 2, 1, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 06 2023

Keywords

Comments

The number of unitary divisors of n that are cubefree numbers (A004709). - Amiram Eldar, Sep 06 2023

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= 2, 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 06 2023 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-X) * (1 + X - X^3))[n], ", "))

Formula

Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^(2*s) - 1/p^(3*s) + 1/p^(4*s)).
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) - 1/p^(3*s) + 1/p^(4*s)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.5358961538283379998085026313185459506482223745141452711510108346133288...,
f'(1) = f(1) * Sum_{p prime} (-4 + 3*p + 2*p^2) * log(p) / (1 - p - p^2 + p^4) = f(1) * 1.4525924794451595590371439593828547341482465114411929136723476679...
and gamma is the Euler-Mascheroni constant A001620.
Multiplicative with a(p^e) = 2 if e <= 2, and 1 otherwise. - Amiram Eldar, Sep 06 2023
From Vaclav Kotesovec, Jan 27 2025: (Start)
Following formulas have been conjectured for this sequence by Sequence Machine, with each one giving the first 1000000 terms correctly:
a(n) = A056671(n) * A368885(n).
a(n) = A034444(n) / A368248(n).
a(n) = A158522(n) / A307428(n).
a(n) = A369310(n) / A190867(n).
a(n) = A286324(n) / A368172(n). (End)

A386470 The number of divisors of n whose exponents in their prime factorization are squares.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 3, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 3, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 6, 3, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jul 22 2025

Keywords

Comments

First differs from A365171 and A369310 at n = 32.
First differs from A365488 at n = 128.
The number of terms in A197680 that divide n.
The sum of these divisors is A386471(n) and the largest of them is A386469(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[Sqrt[e]] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> sqrtint(x) + 1, factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A048760(e) + 1.
a(n) <= A000005(n), with equality if and only if n is squarefree (A005117).

A369309 The number of powerful divisors d of n such that n/d is also powerful.

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Jan 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_,e_] := If[e == 2, 2, e-1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x==2, 2, x-1), factor(n)[,2]));

Formula

Multiplicative with a(p^2) = 2 and a(p^e) = e-1 if e != 2.
a(n) > 0 if and only if n is powerful (A001694).
Dirichlet g.f.: (zeta(2*s)*zeta(3*s)/zeta(6*s))^2.
Sum_{k=1..n} a(k) ~ (zeta(3/2)^2/(2*zeta(3)^2)) * sqrt(n) * (log(n) + 4*gamma - 2 + 6*zeta'(3/2)/zeta(3/2) - 12*zeta'(3)/zeta(3)), where gamma is Euler's constant (A001620).
Showing 1-3 of 3 results.