cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369312 Square array A(n, k), n >= 0, k > 0, read by upwards antidiagonals: P(A(n, k)) is the quotient of the polynomial long division of P(n) by P(k) (where P(m) denotes the polynomial over GF(2) whose coefficients are encoded in the binary expansion of the nonnegative integer m).

This page as a plain text file.
%I A369312 #6 Jan 21 2024 09:37:44
%S A369312 0,1,0,2,0,0,3,1,0,0,4,1,1,0,0,5,2,1,0,0,0,6,2,3,0,0,0,0,7,3,3,1,0,0,
%T A369312 0,0,8,3,2,1,1,0,0,0,0,9,4,2,1,1,1,0,0,0,0,10,4,7,1,1,1,1,0,0,0,0,11,
%U A369312 5,7,2,1,1,1,0,0,0,0,0,12,5,6,2,2,1,1,0,0,0,0,0,0
%N A369312 Square array A(n, k), n >= 0, k > 0, read by upwards antidiagonals: P(A(n, k)) is the quotient of the polynomial long division of P(n) by P(k) (where P(m) denotes the polynomial over GF(2) whose coefficients are encoded in the binary expansion of the nonnegative integer m).
%C A369312 For any number m >= 0 with binary expansion Sum_{k >= 0} b_k * 2^k, P(m) = Sum_{k >= 0} b_k * X^k.
%H A369312 <a href="/index/Ge#GF2X">Index entries for sequences operating on GF(2)[X]-polynomials</a>
%e A369312 Array A(n, k) begins:
%e A369312   n\k |  1  2  3  4  5  6  7  8  9  10  11  12
%e A369312   ----+---------------------------------------
%e A369312     0 |  0  0  0  0  0  0  0  0  0   0   0   0
%e A369312     1 |  1  0  0  0  0  0  0  0  0   0   0   0
%e A369312     2 |  2  1  1  0  0  0  0  0  0   0   0   0
%e A369312     3 |  3  1  1  0  0  0  0  0  0   0   0   0
%e A369312     4 |  4  2  3  1  1  1  1  0  0   0   0   0
%e A369312     5 |  5  2  3  1  1  1  1  0  0   0   0   0
%e A369312     6 |  6  3  2  1  1  1  1  0  0   0   0   0
%e A369312     7 |  7  3  2  1  1  1  1  0  0   0   0   0
%e A369312     8 |  8  4  7  2  2  3  3  1  1   1   1   1
%e A369312     9 |  9  4  7  2  2  3  3  1  1   1   1   1
%e A369312    10 | 10  5  6  2  2  3  3  1  1   1   1   1
%e A369312    11 | 11  5  6  2  2  3  3  1  1   1   1   1
%e A369312    12 | 12  6  4  3  3  2  2  1  1   1   1   1
%o A369312 (PARI) A(n, k) = { fromdigits(lift(Vec( (Mod(1, 2) * Pol(binary(n))) \ (Mod(1, 2) * Pol(binary(k))))), 2) }
%Y A369312 See A369311 for the corresponding remainders.
%Y A369312 Cf. A048720, A010766.
%K A369312 nonn,base,tabl
%O A369312 0,4
%A A369312 _Rémy Sigrist_, Jan 19 2024