This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369314 #7 Jan 22 2024 00:04:03 %S A369314 1,2,7,22,68,214,691,2240,7396,24702,83469,284928,981814,3410990, %T A369314 11939752,42075308,149180356,531866972,1905872189,6861162880, %U A369314 24805796984,90035940942,327988261992,1198853954688,4395798528850 %N A369314 Number of chiral pairs of polyominoes composed of n triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}. %C A369314 A stereographic projection of the {3,oo} tiling on the Poincaré disk can be obtained via the Christensson link. Each member of a chiral pair is a reflection but not a rotation of the other. %H A369314 Malin Christensson, <a href="http://malinc.se/m/ImageTiling.php">Make hyperbolic tilings of images</a>, web page, 2019. %F A369314 a(n) = C(2n,2)/(2(n+1)(n+2)) - [2\(n+1)]*C(n,(n+1)/2)/(2n) - [2\n]*C(n,n/2)/(2n+4) + [3\(n-1)]*C((2n+1)/3,(n-1)/3)/(2n+1). %F A369314 a(n) = A001683(n+2) - A000207(n) = (A001683(n+2) - A208355(n-1)) / 2 = A000207(n) - A208355(n-1). %e A369314 ________ ________ ________ ________ ________ ________ %e A369314 \ /\ /\ /\ /\ / \ /\ /\ /\ /\ / \ /\ /\ /\ /\ / %e A369314 \/__\/__\ /__\/__\/ \/__\/__\ /__\/__\/ \/__\/__\ /__\/__\/ %e A369314 \ / \ / \ / \ / %e A369314 a(4)=1; a(5)=2. \/ \/ \/ \/ %t A369314 Table[Binomial[2n,n]/(2(n+1)(n+2))-If[OddQ[n],Binomial[n,(n+1)/2]/n,Binomial[n,n/2]/(n+2)]/2+If[Divisible[n-1,3],Binomial[(2n+1)/3,(n-1)/3]/(2n+1),0],{n,4,20}] %Y A369314 Polyominoes: A001683(n+2) (oriented), A000207 (unoriented), A208355(n-1) (achiral). %K A369314 nonn,easy %O A369314 4,2 %A A369314 _Robert A. Russell_, Jan 19 2024