This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369315 #12 Jun 20 2025 10:46:26 %S A369315 2,9,48,231,1188,6114,32448,175032,962472,5370524,30377504,173816313, %T A369315 1004823816,5861490300,34468767840,204161269620,1217143807770, %U A369315 7299003615537,44005594027200,266608363362900 %N A369315 Number of chiral pairs of polyominoes composed of n square cells of the hyperbolic regular tiling with Schläfli symbol {4,oo}. %C A369315 A stereographic projection of the {4,oo} tiling on the Poincaré disk can be obtained via the Christensson link. Each member of a chiral pair is a reflection but not a rotation of the other. %H A369315 Malin Christensson, <a href="http://malinc.se/m/ImageTiling.php">Make hyperbolic tilings of images</a>, web page, 2019. %F A369315 a(n) = A005034(n) - A005036(n) = (A005034(n) - A047749(n)) / 2 = A005036(n) - A047749(n). %F A369315 G.f.: (3*G(z) - G(z)^2 - 2*G(z^2) - 3z*G(z^2)^2 + 2z*G(z^4)) / 8, where G(z)=1+z*G(z)^3 is the g.f. for A001764. - _Robert A. Russell_, Jun 19 2025 %e A369315 __ __ __ __ __ __ __ __ __ __ %e A369315 |__|__|__| |__|__|__| |__|__|__ __|__|__| a(4) = 2. %e A369315 |__| |__| |__|__| |__|__| %t A369315 p=4; Table[(Binomial[(p-1)n,n]/(((p-2)n+1)((p-2)n+2))-If[OddQ[n],If[OddQ[p],Binomial[(p-1)n/2,(n-1)/2]/n,(p+1)Binomial[((p-1)n-1)/2,(n-1)/2]/((p-2)n+2)-Binomial[((p-1)n+1)/2,(n-1)/2]/((p-1)n+1)],Binomial[(p-1)n/2,n/2]/((p-2)n+2)]+DivisorSum[GCD[p,n-1],EulerPhi[#]Binomial[((p-1)n+1)/#,(n-1)/#]/((p-1)n+1)&,#>1&])/2,{n,4,30}] %t A369315 Table[(3Binomial[3n,n]/(2n+1)-Binomial[3n+1,n]/(n+1)-If[OddQ[n],6Binomial[(3n-1)/2,(n-1)/2]-If[1==Mod[n,4],4Binomial[(3n-3)/4,(n-1)/4],0],2Binomial[3n/2,n/2]]/(n+1))/8,{n,0,30}] (* _Robert A. Russell_, Jun 19 2025 *) %Y A369315 Polyominoes: A005034 (oriented), A005036 (unoriented), A047749 (achiral), A385149 (asymmetric), A001764 (rooted), A369314 {3,oo}. %K A369315 easy,nonn %O A369315 4,1 %A A369315 _Robert A. Russell_, Jan 19 2024