cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369316 Number of Dyck bridges with resets to zero from (0,0) to (n,0).

This page as a plain text file.
%I A369316 #35 Feb 23 2025 08:13:42
%S A369316 1,0,2,2,8,14,40,84,216,486,1200,2780,6744,15836,38096,90056,215728,
%T A369316 511750,1223136,2907052,6939544,16511028,39386384,93768696,223589648,
%U A369316 532502748,1269433376,3023953560,7207744496,17172061944,40926792224,97513876880,232395416672
%N A369316 Number of Dyck bridges with resets to zero from (0,0) to (n,0).
%C A369316 A Dyck bridge is a lattice path with steps U = (1,1) and D = (1,-1) that is allowed to go below the x-axis and ends at altitude 0.
%C A369316 A reset to zero is a step R = (1,-h) at altitude h for |h| > 1.
%H A369316 Florian Schager, <a href="/A369316/b369316.txt">Table of n, a(n) for n = 0..999</a>
%F A369316 G.f.: -(2*z - 1)*(1 + sqrt(-4*z^2 + 1))^2/((4*z^3 - 4*z^2 - 4*z + 2)*sqrt(-4*z^2 + 1) + 8*z^4 + 12*z^3 - 8*z^2 - 4*z + 2).
%F A369316 a(n) = (4*(2*n-5)*a(n-2) +4*(n-1)*a(n-3) -16*(n-4)*a(n-4) -16*(n-4)*a(n-5))/(n-1) for n>=5. - _Alois P. Heinz_, Jan 20 2024
%e A369316 For n = 4 the a(4) = 8 paths are UUUR, UUDD, UDUD, UDDU, DUUD, DUDU, DDUU, DDDR.
%p A369316 K := 1 - z*(u + 1/u);
%p A369316 v1, u1 := solve(K, u);
%p A369316 B := -z*diff(v1, z)/v1;
%p A369316 W := 1/(1 - 2*z);
%p A369316 W1 := -z*diff(v1, z)/v1^2;
%p A369316 Wminus1 := z*diff(u1, z);
%p A369316 Q := z*(W - B - W1 - Wminus1);
%p A369316 series(B/(1 - Q), z, 40);
%p A369316 # second Maple program:
%p A369316 b:= proc(x, y) option remember; `if`(x=0, `if`(y=0, 1, 0),
%p A369316       `if`(y>1, b(x-1, 0), 0)+b(x-1, abs(y-1))+b(x-1, y+1))
%p A369316     end:
%p A369316 a:= n-> b(n, 0):
%p A369316 seq(a(n), n=0..32);  # _Alois P. Heinz_, Jan 19 2024
%t A369316 b[x_, y_] := b[x, y] = If[x == 0, If[y == 0, 1, 0],
%t A369316    If[y > 1, b[x - 1, 0], 0] + b[x - 1, Abs[y - 1]] + b[x - 1, y + 1]];
%t A369316 a[n_] := b[n, 0];
%t A369316 Table[a[n], {n, 0, 32}] (* _Jean-François Alcover_, Feb 23 2025, after _Alois P. Heinz_ *)
%o A369316 (PARI) seq(n) = my(r=sqrt(1 - 4*x^2 + O(x*x^n))); Vec((1 - 2*x)*(1 + r)^2/(2*(1 - 2*x - 2*x^2 + 2*x^3)*r + 2 - 4*x - 8*x^2 + 12*x^3 + 8*x^4)) \\ _Andrew Howroyd_, Jan 19 2024
%Y A369316 Cf. A224747 (Dyck excursions).
%K A369316 nonn,walk
%O A369316 0,3
%A A369316 _Florian Schager_, Jan 19 2024