A369317 a(n) = A091255(n, n + 1).
1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 1, 3, 1, 1, 1, 3, 1, 7, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 7, 1, 3, 1, 1
Offset: 1
Examples
The first terms, alongside the correspond GF(2)[X]-polynomials, are: n a(n) P(n) P(n+1) gcd(P(n), P(n+1)) -- ---- ----------------- ----------------- ----------------- 1 1 1 X 1 2 1 X X + 1 1 3 1 X + 1 X^2 1 4 1 X^2 X^2 + 1 1 5 3 X^2 + 1 X^2 + X X + 1 6 1 X^2 + X X^2 + X + 1 1 7 1 X^2 + X + 1 X^3 1 8 1 X^3 X^3 + 1 1 9 3 X^3 + 1 X^3 + X X + 1 10 1 X^3 + X X^3 + X + 1 1
Programs
-
PARI
a(n) = fromdigits(lift(Vec(gcd(Mod(1, 2) * Pol(binary(n)), Mod(1, 2) * Pol(binary(n+1))))), 2)
Formula
a(A129868(k)) = 2^(k+1) - 1 for any k > 0.
Comments