A369319 a(n) is the sum of the greatest common exponential divisor of n and k over the positive numbers k that do not exceed n.
1, 2, 3, 6, 5, 6, 7, 12, 12, 10, 11, 18, 13, 14, 15, 24, 17, 24, 19, 30, 21, 22, 23, 36, 30, 26, 33, 42, 29, 30, 31, 40, 33, 34, 35, 72, 37, 38, 39, 60, 41, 42, 43, 66, 60, 46, 47, 72, 56, 60, 51, 78, 53, 66, 55, 84, 57, 58, 59, 90, 61, 62, 84, 84, 65, 66, 67
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- László Tóth, On certain arithmetic functions involving exponential divisors, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 24 (2004), pp. 285-294; arXiv preprint, arXiv:math/0610274v2 [math.NT], 2006-2009.
- Eric Weisstein's World of Mathematics, e-Divisor.
Programs
-
Mathematica
f[p_, e_] := DivisorSum[e, p^#*EulerPhi[e/#] &]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, sumdiv(f[i,2], d, f[i,1]^d * eulerphi(f[i,2]/d)));}
Formula
a(n) = Sum_{k=1..n, rad(k) = rad(n)} (n, k)(e), where (n, k)(e) = Product_{p|n} p^gcd(v_p(n), v_p(k)), and v_p(n) is the p-adic valuation of n (the exponent of the highest power of p that divides n).
Multiplicative with a(p^e) = Sum_{k=1..e} p^gcd(e, k) = Sum_{d|e} p^d * phi(e/d), where phi is the Euler totient function (A000010).
Dirichlet g.f.: (zeta(s-1)*zeta(2*s-1)/zeta(3*s-2)) * Product_{p prime} (1 + ((p^(s-1)-1)*(p^(2*s-1)-1)/(p^(3*s-2)-1)) * Sum_{k>=3} phi(k)/(p^(k*s-1)-1)).
Sum_{k=1..n} a(k) = c * n^2 / 2 + O(n * log(n)^(5/3)), where c = Product_{p prime} (1 + Sum_{k>=2} (a(p^k) - p*a(p^(k-1)))/p^(2*k)) = 1.16509457249412700814... .
Lim sup_{n->oo} a(n)/(n*log(log(n))) = 6 * exp(gamma)/Pi^2 (A335004).
Comments