cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369332 a(n) is the sum of numbers whose binary forms can be constructed using some or all of the binary digits of 1..n.

This page as a plain text file.
%I A369332 #17 Jan 29 2024 19:09:46
%S A369332 1,17,186,12234,605714,30143621,865062888,374978871766,92420578210888,
%T A369332 22764626902276757,4227156427366610576,1076625258046594762034,
%U A369332 196829039855755478065982,34737980525681450161565604,3519580168264415862502129296,8186117385516870986118141242073
%N A369332 a(n) is the sum of numbers whose binary forms can be constructed using some or all of the binary digits of 1..n.
%e A369332 For a(3) = 186, the binary forms of n = 1, 2 and 3 are 1, 10 and 11. These together contain four 1's and one 0. The possible combinations to construct binary numbers of these are below with their equivalent decimal values:
%e A369332        1     1
%e A369332       10     2
%e A369332       11     3
%e A369332      101     5
%e A369332      110     6
%e A369332      111     7
%e A369332     1011    11
%e A369332     1101    13
%e A369332     1110    14
%e A369332     1111    15
%e A369332    10111    23
%e A369332    11011    27
%e A369332    11101    29
%e A369332    11110    30
%e A369332            ---
%e A369332    Total:  186
%o A369332 (PARI) a(n)={my(w=0,b=0); for(i=1, n, w+=hammingweight(i); b+=logint(i,2)+1); sum(j=0, w-1, sum(k=0, b-w, my(t=j+k);if(t, binomial(t,j)*(2^t + j*(2^t-1)/t), 1) ))} \\ _Andrew Howroyd_, Jan 20 2024
%Y A369332 Cf. A181132, A000788.
%K A369332 nonn,base
%O A369332 1,2
%A A369332 _Tamas Sandor Nagy_, Jan 20 2024
%E A369332 More terms from _Andrew Howroyd_, Jan 20 2024