This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369346 #35 Feb 14 2025 17:27:04 %S A369346 1,2,6,1,3,5,4,22,1,1,4,1,2,84,1,3,1,6,1,3,1,9,1,1,1,1,19,3,1,2,1,5,1, %T A369346 5,2,2,1,1,1,1,76,6,8,1,1,5,1,5,1,1,25,1,2,1,116,2,1,8,1,1,3,1,53,5, %U A369346 276,2,1,1,1,3,3,2,1,1,4,13,1,1,1,4,1,1,1,9,9,1,1,9,6,1,2,32 %N A369346 Continued fraction expansion of the real root of x^3 - x^2 - 1 = 0. %H A369346 Patrick McKinley, <a href="/A369346/b369346.txt">Table of n, a(n) for n = 0..12174</a> %H A369346 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SupergoldenRatio.html">Supergolden Ratio</a>. %t A369346 ContinuedFraction[x/.First[Solve[x^3-x^2-1==0,x]],92] (* _Stefano Spezia_, Jan 21 2024 *) %o A369346 (bc) %o A369346 /* The "test" calculation evaluates the cubic to confirm the calculation of the root. */ %o A369346 define iter(frac) %o A369346 {j = 0 %o A369346 while(frac > 1){ %o A369346 frac -= 1; %o A369346 j+=1} %o A369346 j %o A369346 return 1/frac} %o A369346 scale=12578 %o A369346 f=(1+(e(l(((29+3*sqrt(93))/2))/3))+(e(l(((29-3*sqrt(93))/2))/3)))/3 %o A369346 psi=f %o A369346 test=(psi-1)*psi*psi-1 %o A369346 for(i=0;i<12175;i++)f=iter(f) %o A369346 (PARI) %o A369346 \p100 \\ realprecision %o A369346 contfrac(solve(x = 1, 2, x^3 - x^2 - 1),, 80) \\ _Hugo Pfoertner_, Jan 21 2024 %Y A369346 Cf. A092526 (decimal expansion), A381124, A381125 (convergents). %K A369346 nonn,cofr %O A369346 0,2 %A A369346 _Patrick McKinley_, Jan 20 2024 %E A369346 Offset changed by _Andrew Howroyd_, Feb 14 2025