cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369376 a(n) is the number of elements p(j) > j (right displacements) in the n-th permutation in lexicographic order.

This page as a plain text file.
%I A369376 #13 Jan 22 2024 03:43:31
%S A369376 0,1,1,2,1,1,1,2,2,3,2,2,1,2,1,2,2,2,1,1,1,1,2,2,1,2,2,3,2,2,2,3,3,4,
%T A369376 3,3,2,3,2,3,3,3,2,2,2,2,3,3,1,2,2,3,2,2,1,2,2,3,2,2,2,3,2,3,3,3,2,2,
%U A369376 2,2,3,3,1,2,1,2,2,2,1,2,1,2,2,2,2,3,2,3,3,3,2,2,2,2,2,2,1,1,1,1,2,2,1,1,1,1,2,2,2,2,2,2,3,3,2,2,2,2,2,2
%N A369376 a(n) is the number of elements p(j) > j (right displacements) in the n-th permutation in lexicographic order.
%H A369376 Joerg Arndt, <a href="/A369376/b369376.txt">Table of n, a(n) for n = 0..40319</a>
%F A369376 a(n) + A369377(n) = A055093(n).
%e A369376 In the following dots are used for zeros in the permutations and their inverses.
%e A369376    n:    permutation    inv. perm.   a(n)
%e A369376    0:    [ . 1 2 3 ]    [ . 1 2 3 ]   0
%e A369376    1:    [ . 1 3 2 ]    [ . 1 3 2 ]   1
%e A369376    2:    [ . 2 1 3 ]    [ . 2 1 3 ]   1
%e A369376    3:    [ . 2 3 1 ]    [ . 3 1 2 ]   2
%e A369376    4:    [ . 3 1 2 ]    [ . 2 3 1 ]   1
%e A369376    5:    [ . 3 2 1 ]    [ . 3 2 1 ]   1
%e A369376    6:    [ 1 . 2 3 ]    [ 1 . 2 3 ]   1
%e A369376    7:    [ 1 . 3 2 ]    [ 1 . 3 2 ]   2
%e A369376    8:    [ 1 2 . 3 ]    [ 2 . 1 3 ]   2
%e A369376    9:    [ 1 2 3 . ]    [ 3 . 1 2 ]   3
%e A369376   10:    [ 1 3 . 2 ]    [ 2 . 3 1 ]   2
%e A369376   11:    [ 1 3 2 . ]    [ 3 . 2 1 ]   2
%e A369376   12:    [ 2 . 1 3 ]    [ 1 2 . 3 ]   1
%e A369376   13:    [ 2 . 3 1 ]    [ 1 3 . 2 ]   2
%e A369376   14:    [ 2 1 . 3 ]    [ 2 1 . 3 ]   1
%e A369376   15:    [ 2 1 3 . ]    [ 3 1 . 2 ]   2
%e A369376   16:    [ 2 3 . 1 ]    [ 2 3 . 1 ]   2
%e A369376   17:    [ 2 3 1 . ]    [ 3 2 . 1 ]   2
%e A369376   18:    [ 3 . 1 2 ]    [ 1 2 3 . ]   1
%e A369376   19:    [ 3 . 2 1 ]    [ 1 3 2 . ]   1
%e A369376   20:    [ 3 1 . 2 ]    [ 2 1 3 . ]   1
%e A369376   21:    [ 3 1 2 . ]    [ 3 1 2 . ]   1
%e A369376   22:    [ 3 2 . 1 ]    [ 2 3 1 . ]   2
%e A369376   23:    [ 3 2 1 . ]    [ 3 2 1 . ]   2
%Y A369376 Cf. A369377, A055093, A034968.
%K A369376 nonn
%O A369376 0,4
%A A369376 _Joerg Arndt_, Jan 22 2024