This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369377 #11 Jan 22 2024 03:54:25 %S A369377 0,1,1,1,2,1,1,2,1,1,2,1,2,2,1,1,2,2,3,2,2,1,2,2,1,2,2,2,3,2,1,2,1,1, %T A369377 2,1,2,2,1,1,2,2,3,2,2,1,2,2,2,3,2,2,3,2,1,2,1,1,2,1,2,2,2,2,2,2,3,2, %U A369377 3,2,2,2,3,3,2,2,3,3,2,2,1,1,2,2,2,2,2,2,2,2,3,3,3,3,2,2,4,3,3,2,3,3,3,2,2,1,2,2,3,2,3,2,2,2,3,3,3,3,2,2 %N A369377 a(n) is the number of elements p(j) < j (left displacements) in the n-th permutation in lexicographic order. %H A369377 Joerg Arndt, <a href="/A369377/b369377.txt">Table of n, a(n) for n = 0..40319</a> %F A369377 a(n) + A369376(n) = A055093(n). %e A369377 In the following dots are used for zeros in the permutations and their inverses. %e A369377 n: permutation inv. perm. a(n) %e A369377 0: [ . 1 2 3 ] [ . 1 2 3 ] 0 %e A369377 1: [ . 1 3 2 ] [ . 1 3 2 ] 1 %e A369377 2: [ . 2 1 3 ] [ . 2 1 3 ] 1 %e A369377 3: [ . 2 3 1 ] [ . 3 1 2 ] 1 %e A369377 4: [ . 3 1 2 ] [ . 2 3 1 ] 2 %e A369377 5: [ . 3 2 1 ] [ . 3 2 1 ] 1 %e A369377 6: [ 1 . 2 3 ] [ 1 . 2 3 ] 1 %e A369377 7: [ 1 . 3 2 ] [ 1 . 3 2 ] 2 %e A369377 8: [ 1 2 . 3 ] [ 2 . 1 3 ] 1 %e A369377 9: [ 1 2 3 . ] [ 3 . 1 2 ] 1 %e A369377 10: [ 1 3 . 2 ] [ 2 . 3 1 ] 2 %e A369377 11: [ 1 3 2 . ] [ 3 . 2 1 ] 1 %e A369377 12: [ 2 . 1 3 ] [ 1 2 . 3 ] 2 %e A369377 13: [ 2 . 3 1 ] [ 1 3 . 2 ] 2 %e A369377 14: [ 2 1 . 3 ] [ 2 1 . 3 ] 1 %e A369377 15: [ 2 1 3 . ] [ 3 1 . 2 ] 1 %e A369377 16: [ 2 3 . 1 ] [ 2 3 . 1 ] 2 %e A369377 17: [ 2 3 1 . ] [ 3 2 . 1 ] 2 %e A369377 18: [ 3 . 1 2 ] [ 1 2 3 . ] 3 %e A369377 19: [ 3 . 2 1 ] [ 1 3 2 . ] 2 %e A369377 20: [ 3 1 . 2 ] [ 2 1 3 . ] 2 %e A369377 21: [ 3 1 2 . ] [ 3 1 2 . ] 1 %e A369377 22: [ 3 2 . 1 ] [ 2 3 1 . ] 2 %e A369377 23: [ 3 2 1 . ] [ 3 2 1 . ] 2 %Y A369377 Cf. A369376, A055093, A034968. %K A369377 nonn %O A369377 0,5 %A A369377 _Joerg Arndt_, Jan 22 2024