cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369377 a(n) is the number of elements p(j) < j (left displacements) in the n-th permutation in lexicographic order.

This page as a plain text file.
%I A369377 #11 Jan 22 2024 03:54:25
%S A369377 0,1,1,1,2,1,1,2,1,1,2,1,2,2,1,1,2,2,3,2,2,1,2,2,1,2,2,2,3,2,1,2,1,1,
%T A369377 2,1,2,2,1,1,2,2,3,2,2,1,2,2,2,3,2,2,3,2,1,2,1,1,2,1,2,2,2,2,2,2,3,2,
%U A369377 3,2,2,2,3,3,2,2,3,3,2,2,1,1,2,2,2,2,2,2,2,2,3,3,3,3,2,2,4,3,3,2,3,3,3,2,2,1,2,2,3,2,3,2,2,2,3,3,3,3,2,2
%N A369377 a(n) is the number of elements p(j) < j (left displacements) in the n-th permutation in lexicographic order.
%H A369377 Joerg Arndt, <a href="/A369377/b369377.txt">Table of n, a(n) for n = 0..40319</a>
%F A369377 a(n) + A369376(n) = A055093(n).
%e A369377 In the following dots are used for zeros in the permutations and their inverses.
%e A369377    n:    permutation    inv. perm.   a(n)
%e A369377    0:    [ . 1 2 3 ]    [ . 1 2 3 ]   0
%e A369377    1:    [ . 1 3 2 ]    [ . 1 3 2 ]   1
%e A369377    2:    [ . 2 1 3 ]    [ . 2 1 3 ]   1
%e A369377    3:    [ . 2 3 1 ]    [ . 3 1 2 ]   1
%e A369377    4:    [ . 3 1 2 ]    [ . 2 3 1 ]   2
%e A369377    5:    [ . 3 2 1 ]    [ . 3 2 1 ]   1
%e A369377    6:    [ 1 . 2 3 ]    [ 1 . 2 3 ]   1
%e A369377    7:    [ 1 . 3 2 ]    [ 1 . 3 2 ]   2
%e A369377    8:    [ 1 2 . 3 ]    [ 2 . 1 3 ]   1
%e A369377    9:    [ 1 2 3 . ]    [ 3 . 1 2 ]   1
%e A369377   10:    [ 1 3 . 2 ]    [ 2 . 3 1 ]   2
%e A369377   11:    [ 1 3 2 . ]    [ 3 . 2 1 ]   1
%e A369377   12:    [ 2 . 1 3 ]    [ 1 2 . 3 ]   2
%e A369377   13:    [ 2 . 3 1 ]    [ 1 3 . 2 ]   2
%e A369377   14:    [ 2 1 . 3 ]    [ 2 1 . 3 ]   1
%e A369377   15:    [ 2 1 3 . ]    [ 3 1 . 2 ]   1
%e A369377   16:    [ 2 3 . 1 ]    [ 2 3 . 1 ]   2
%e A369377   17:    [ 2 3 1 . ]    [ 3 2 . 1 ]   2
%e A369377   18:    [ 3 . 1 2 ]    [ 1 2 3 . ]   3
%e A369377   19:    [ 3 . 2 1 ]    [ 1 3 2 . ]   2
%e A369377   20:    [ 3 1 . 2 ]    [ 2 1 3 . ]   2
%e A369377   21:    [ 3 1 2 . ]    [ 3 1 2 . ]   1
%e A369377   22:    [ 3 2 . 1 ]    [ 2 3 1 . ]   2
%e A369377   23:    [ 3 2 1 . ]    [ 3 2 1 . ]   2
%Y A369377 Cf. A369376, A055093, A034968.
%K A369377 nonn
%O A369377 0,5
%A A369377 _Joerg Arndt_, Jan 22 2024