cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369379 Number of Dabbaghian-Wu pandiagonal Latin squares of order 2n+1 with the first row in order.

This page as a plain text file.
%I A369379 #13 Feb 25 2024 10:13:28
%S A369379 1,0,0,4,0,0,72,0,0,108,0,0,4,0,0,180,0,3,216,0,0,252,0,0,264,0,0,0,0,
%T A369379 0,360,0,5,396,0,0,432,0,0,468,0,0,0,0,0,868,0,5,576,0
%N A369379 Number of Dabbaghian-Wu pandiagonal Latin squares of order 2n+1 with the first row in order.
%C A369379 A pandiagonal Latin square is a Latin square in which the diagonal, antidiagonal and all broken diagonals and antidiagonals are transversals.
%C A369379 A Dabbaghian-Wu pandiagonal Latin square (see A368027) is a special type of pandiagonal Latin square (see A342306). Such squares are constructed from cyclic diagonal Latin squares (see A338562) for prime orders n=6k+1 (see Dabbaghian and Wu article) using a polynomial algorithm based on permutation of some values in Latin square. For other orders (25, 35, 49, ...) this algorithm also ensures correct pandiagonal Latin squares.
%H A369379 Vahid Dabbaghian and Tiankuang Wu, <a href="https://doi.org/10.1016/j.jda.2014.12.001">Constructing non-cyclic pandiagonal Latin squares of prime orders</a>, Journal of Discrete Algorithms, Vol. 30, 2015, pp. 70-77, doi: 10.1016/j.jda.2014.12.001.
%H A369379 <a href="https://oeis.org/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.
%e A369379 n=13=6*2+1 (prime order):
%e A369379 .
%e A369379  0  1  2  3  4  5  6  7  8  9 10 11 12
%e A369379  2  3  0  1 11 12  8  4 10  7  5  6  9
%e A369379  4 10 11  2  8  1  3  0 12  6  9  7  5
%e A369379 11  5  9  7 10  0 12  1  3  2  8  4  6
%e A369379  8  7 10  5  9  6 11  2  0  4  3 12  1
%e A369379 12  0  4  6  7  2  9 10  5 11  1  8  3
%e A369379  1  6 12  8  3  4  5 11  9 10  7  2  0
%e A369379  9  2  3  4 12  8  1  6  7  5  0 10 11
%e A369379 10 11  5  0  1  3  7  8  4 12  6  9  2
%e A369379  5  9  1 11  2 10  0 12  6  8  4  3  7
%e A369379  6  8  7 10  0 11  2  9  1  3 12  5  4
%e A369379  7  4  6 12  5  9 10  3  2  0 11  1  8
%e A369379  3 12  8  9  6  7  4  5 11  1  2  0 10
%e A369379 .
%e A369379 n=19=6*3+1 (prime order):
%e A369379 .
%e A369379  0  1  2  3  4  5  6  7  8  9 10 11 12
%e A369379  2  3  0  1 11 12  8  4 10  7  5  6  9
%e A369379  4 10 11  2  8  1  3  0 12  6  9  7  5
%e A369379 11  5  9  7 10  0 12  1  3  2  8  4  6
%e A369379  8  7 10  5  9  6 11  2  0  4  3 12  1
%e A369379 12  0  4  6  7  2  9 10  5 11  1  8  3
%e A369379  1  6 12  8  3  4  5 11  9 10  7  2  0
%e A369379  9  2  3  4 12  8  1  6  7  5  0 10 11
%e A369379 10 11  5  0  1  3  7  8  4 12  6  9  2
%e A369379  5  9  1 11  2 10  0 12  6  8  4  3  7
%e A369379  6  8  7 10  0 11  2  9  1  3 12  5  4
%e A369379  7  4  6 12  5  9 10  3  2  0 11  1  8
%e A369379  3 12  8  9  6  7  4  5 11  1  2  0 10
%e A369379 .
%e A369379 n=25=6*4+1 (nonprime order):
%e A369379 .
%e A369379  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
%e A369379  3  4 15  6  7  8  9  5 11 12 13 14  0 16 17 18 19 10 21 22 23 24 20  1  2
%e A369379  6  7  8  9 10 11 12 13 14 15 16 17 18 19  0 21 22 23 24  5  1  2  3  4 20
%e A369379  9  5 11 12 13 14 10 16 17 18 19 20 21 22 23 24  0  1  2  3  4 15  6  7  8
%e A369379 12 13 14  0 16 17 18 19 10 21 22 23 24  5  1  2  3  4 20  6  7  8  9 15 11
%e A369379 15 16 17 18 19 20 21 22 23 24  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14
%e A369379 18 19 10 21 22 23 24 20  1  2  3  4 15  6  7  8  9  5 11 12 13 14  0 16 17
%e A369379 21 22 23 24  5  1  2  3  4 20  6  7  8  9 10 11 12 13 14 15 16 17 18 19  0
%e A369379 24  0  1  2  3  4 15  6  7  8  9  5 11 12 13 14 10 16 17 18 19 20 21 22 23
%e A369379  2  3  4 20  6  7  8  9 15 11 12 13 14  0 16 17 18 19 10 21 22 23 24  5  1
%e A369379  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  0  1  2  3  4
%e A369379  8  9  5 11 12 13 14  0 16 17 18 19 10 21 22 23 24 20  1  2  3  4 15  6  7
%e A369379 11 12 13 14 15 16 17 18 19  0 21 22 23 24  5  1  2  3  4 20  6  7  8  9 10
%e A369379 14 10 16 17 18 19 20 21 22 23 24  0  1  2  3  4 15  6  7  8  9  5 11 12 13
%e A369379 17 18 19 10 21 22 23 24  5  1  2  3  4 20  6  7  8  9 15 11 12 13 14  0 16
%e A369379 20 21 22 23 24  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
%e A369379 23 24 20  1  2  3  4 15  6  7  8  9  5 11 12 13 14  0 16 17 18 19 10 21 22
%e A369379  1  2  3  4 20  6  7  8  9 10 11 12 13 14 15 16 17 18 19  0 21 22 23 24  5
%e A369379  4 15  6  7  8  9  5 11 12 13 14 10 16 17 18 19 20 21 22 23 24  0  1  2  3
%e A369379  7  8  9 15 11 12 13 14  0 16 17 18 19 10 21 22 23 24  5  1  2  3  4 20  6
%e A369379 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  0  1  2  3  4  5  6  7  8  9
%e A369379 13 14  0 16 17 18 19 10 21 22 23 24 20  1  2  3  4 15  6  7  8  9  5 11 12
%e A369379 16 17 18 19  0 21 22 23 24  5  1  2  3  4 20  6  7  8  9 10 11 12 13 14 15
%e A369379 19 20 21 22 23 24  0  1  2  3  4 15  6  7  8  9  5 11 12 13 14 10 16 17 18
%e A369379 22 23 24  5  1  2  3  4 20  6  7  8  9 15 11 12 13 14  0 16 17 18 19 10 21
%Y A369379 Cf. A338562, A342306, A368027, A369380.
%K A369379 nonn,more
%O A369379 1,4
%A A369379 _Eduard I. Vatutin_, Jan 22 2024