This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369381 #13 Mar 03 2024 11:28:16 %S A369381 1,0,1,0,3,7,0,6,60,90,0,10,310,1505,1701,0,15,1260,14490,46620,42525, %T A369381 0,21,4445,105875,716205,1727110,1323652,0,28,14280,653100,8162000, %U A369381 38623200 %N A369381 Triangle of numbers read by rows T(n,k) = binomial(n+1,k+1)*Stirling2(n+k,k). %C A369381 The triangle T(n,k) is a functional dual of the triangle A269939 in identity: B(n) = Sum_{k=0..n}(-1)^(k)*A269939(n,k)/Binomial(n+k,k) = Sum_{k=0..n}(-1)^(k)*T(n,k)/Binomial(n+k,k). Where B(n) are the Bernoulli numbers. %H A369381 I. V. Statsenko, <a href="https://aeterna-ufa.ru/sbornik/IN-2024-01-2.pdf#page=15">Functional twin of triangle A269939</a>, Innovation science No 1-2, State Ufa, Aeterna Publishing House, 2024, pp. 15-19. In Russian. %F A369381 T(n,k) = binomial(n+1,k+1)*Stirling2(n+k,k). %e A369381 n\k 0 1 2 3 4 5 %e A369381 0: 1 %e A369381 1: 0 1 %e A369381 2: 0 3 7 %e A369381 3: 0 6 60 90 %e A369381 4: 0 10 310 1505 1701 %e A369381 5: 0 15 1260 14490 46620 42525 %p A369381 T:=(n,k)->((n+1)!/((k+1)!*(n-k)!))*Stirling2(n+k,k):seq(seq T(n,k),k=0..n), n=0..10); %Y A369381 Cf. A007820 (right diagonal). %K A369381 nonn,tabl %O A369381 0,5 %A A369381 _Igor Victorovich Statsenko_, Jan 22 2024