This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369390 #10 Jan 27 2024 20:48:11 %S A369390 1,1,2,4,6,13,31,77,188,449,1191,3014,7920,21498,57833,154073,412733, %T A369390 1141274,3106771,8576977,24015471,66489615,185886699,517837152, %U A369390 1435964205,4034697191,11438332340,32395341851,92396549863,263233759500,736127855014,2093027604453 %N A369390 a(n) = [x^prime(n)] Product_{k=1..n} (x^prime(k) + 1 + 1/x^prime(k)). %H A369390 Alois P. Heinz, <a href="/A369390/b369390.txt">Table of n, a(n) for n = 1..400</a> %p A369390 s:= proc(n) s(n):= `if`(n<1, 0, ithprime(n)+s(n-1)) end: %p A369390 b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=0, 1, %p A369390 b(n, i-1)+b(n+ithprime(i), i-1)+b(abs(n-ithprime(i)), i-1))) %p A369390 end: %p A369390 a:= n-> b(ithprime(n), n): %p A369390 seq(a(n), n=1..40); # _Alois P. Heinz_, Jan 22 2024 %t A369390 Table[Coefficient[Product[(x^Prime[k] + 1 + 1/x^Prime[k]), {k, 1, n}], x, Prime[n]], {n, 1, 32}] %Y A369390 Cf. A063890, A316706, A350880. %K A369390 nonn %O A369390 1,3 %A A369390 _Ilya Gutkovskiy_, Jan 22 2024