This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369407 #9 Jan 24 2024 13:55:16 %S A369407 1,2,6,24,120,20,108,864,96,960,6720,624,6192,37152,491232,30702,1806, %T A369407 127,1905,27348,486596,25102,1890,19760,456624,5581280,439712,21624, %U A369407 451032,5199760,123954032,3966529024,123317760,3850804224,127210628096,4070965504 %N A369407 A variant of A008336 based on polynomials over GF(2) (see Comments for precise definition). %C A369407 Let P(m) denote the polynomial over GF(2) whose coefficients are encoded in the binary expansion of the nonnegative integer m. %C A369407 Let b(1) = 1 and for any n > 0, if P(n) divides b(n) then b(n+1) = b(n) / P(n), otherwise b(n+1) = b(n) * P(n). %C A369407 For any n > 0, a(n) is the unique number v such that P(v) = b(n). %H A369407 Rémy Sigrist, <a href="/A369407/b369407.txt">Table of n, a(n) for n = 1..3842</a> %H A369407 <a href="/index/Ge#GF2X">Index entries for sequences operating on GF(2)[X]-polynomials</a> %e A369407 The first terms, alongside the corresponding polynomials, are: %e A369407 n a(n) b(n) P(n) %e A369407 -- ---- --------------------- ----------- %e A369407 1 1 1 1 %e A369407 2 2 X X %e A369407 3 6 X^2 + X X + 1 %e A369407 4 24 X^4 + X^3 X^2 %e A369407 5 120 X^6 + X^5 + X^4 + X^3 X^2 + 1 %e A369407 6 20 X^4 + X^2 X^2 + X %e A369407 7 108 X^6 + X^5 + X^3 + X^2 X^2 + X + 1 %e A369407 8 864 X^9 + X^8 + X^6 + X^5 X^3 %e A369407 9 96 X^6 + X^5 X^3 + 1 %e A369407 10 960 X^9 + X^8 + X^7 + X^6 X^3 + X %o A369407 (PARI) P(n) = Mod(1, 2) * Pol(binary(n)) %o A369407 P_1(p) = fromdigits(lift(Vec(p)), 2) %o A369407 { b = 1; for (n = 1, 36, p = P(n); if (b % p==0, b \= p, b *= p); print1 (P_1(b)", ");); } %Y A369407 Cf. A008336. %K A369407 nonn,base %O A369407 1,2 %A A369407 _Rémy Sigrist_, Jan 22 2024